Combine Pandas DataFrame DateTime Columns
Better use pd.to_datetime
:
df['Date'] = pd.to_datetime(df[['Year','Month','Day']])
>>> df
Year Month Day Date
0 2003 1 8 2003-01-08
1 2003 2 7 2003-02-07
>>> from datetime import datetime
>>> df['Date'] = df.apply(lambda row: datetime(
row['Year'], row['Month'], row['Day']), axis=1)
>>> df
Year Month Day Date
0 2003 1 8 2003-01-08 00:00:00
1 2003 2 7 2003-02-07 00:00:00
Update 2020-03-12: The answer from sacul is better and faster:
%%timeit
df.apply(lambda row: datetime(
row['Year'], row['Month'], row['Day']), axis=1)
2.53 s ± 169 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# use below, above is slow!!!
%%timeit
pd.to_datetime(df[['Year','Month','Day']])
14.4 ms ± 3.37 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)