Comparing floats in a pandas column

Due to imprecise float comparison you can or your comparison with np.isclose, isclose takes a relative and absolute tolerance param so the following should work:

df['result'] = df['actual_credit'].ge(df['min_required_credit']) | np.isclose(df['actual_credit'], df['min_required_credit'])

@EdChum's answer works great, but using the pandas.DataFrame.round function is another clean option that works well without the use of numpy.

df = pd.DataFrame(  # adding a small difference at the thousandths place to reproduce the issue
    data=[[0.3, 0.4], [0.5, 0.2], [0.400, 0.401], [0.2, 0.3]],
    columns=['actual_credit', 'min_required_credit'])

df['result'] = df['actual_credit'].round(1) >= df['min_required_credit'].round(1)
print(df)
   actual_credit  min_required_credit  result
0            0.3                0.400   False
1            0.5                0.200    True
2            0.4                0.401    True
3            0.2                0.300   False

You might consider using round() to more permanently edit your dataframe, depending if you desire that precision or not. In this example, it seems like the OP suggests this is probably just noise and is just causing confusion.

df = pd.DataFrame(  # adding a small difference at the thousandths place to reproduce the issue
    data=[[0.3, 0.4], [0.5, 0.2], [0.400, 0.401], [0.2, 0.3]],
    columns=['actual_credit', 'min_required_credit'])
df = df.round(1)
df['result'] = df['actual_credit'] >= df['min_required_credit']
print(df)
   actual_credit  min_required_credit  result
0            0.3                  0.4   False
1            0.5                  0.2    True
2            0.4                  0.4    True
3            0.2                  0.3   False