Completing the square to solve limit problems

It need not be $\alpha^2$. Adding any constant $\beta$ doesn't change the limit:

$$\lim\limits_{x\to\infty}\sqrt{x^2+2\alpha x+\beta}-\sqrt{x^2+2\alpha x}=\lim\limits_{x\to\infty}\dfrac{\beta}{\sqrt{x^2+2\alpha x+\beta}+\sqrt{x^2+2\alpha x}}= 0$$


Replacing $x=\frac{1}{t}$ and considering $t\to 0^+$ you get

\begin{eqnarray*} \sqrt{x^2+2\alpha x}-\sqrt{x^2+2\alpha x+\alpha^2} & \stackrel{x=\frac{1}{t}}{=} & \frac{\sqrt{1+2\alpha t} - \sqrt{1+2\alpha t + a^2t^2}}{t} \\ & = & \frac{\sqrt{1+2\alpha t} - 1}{t} - \frac{\sqrt{1+2\alpha t + a^2t^2}-1}{t}\\ & \stackrel{t \to 0^+,L'Hosp.}{\longrightarrow}& \frac{\alpha}{\sqrt{1+2\alpha t}} - \frac{\alpha + t\alpha^2}{\sqrt{1+2\alpha t + a^2t^2}} \\ & = & \alpha - \alpha = 0 \end{eqnarray*}


You can use $\sqrt{x^2+x}=x\sqrt {1+\frac 1x}=x(1+\frac 1{2x}+o(\frac 1x)) \to x+\frac 12+o(1)$ to justify what you do