Complex continuation of an interpolated function
There are limitations to extending polynomial interpolation on a real interval to the complex plane. The limitations are related to the Bernstein ellipse (see also Trefethen, Approximation Theory and Approximation Practice esp. Ch. 8 or this excerpt, pp. 41f, Bernstein (1912), etc.). Updated: You imply you can interpolate over complex values in the domain (I think I misread or overlooked this initially), in which case there is a way to get an accurate interpolation over a disk, as alluded to by @J.M. in a comment above. See for instance, Boyd, Solving Transcendental Equations. There is an update below the examples of extending real interpolation. It shows an example that gives a much better approximation over a complex disk.
Extending real interpolations to the complex plane
Below are three interpolation schemes for approximating a Bessel function on a real interval, Chebyshev, Legendre, and a uniform grid. The first two are more accurate over a larger domain and show how outside the Bernstein ellipse, the interpolation fails to converge to the function. The third scheme suffers from the well-known Runge phenomenon on the real line and does not extend as gracefully to the complex plane.
The plots show the relative error on the complex plane and the (real) interpolation interval {a, b}
. The error in the complex plane is clipped at 0.001
.
Note that interpolation is sensitive to whether the function is entire or has singularities/poles. It's probable that if the accuracy of the approximation of the function at the interpolation nodes on the real interval is limited, it will impact the accuracy of the extension to the complex plane.
func[x_] := BesselJ[0, x];
{a, b} = {0, 20};(*interval of approximation*)
(* Chebyshev interpolation *)
nnodes = 64;(* degree *)
xnodes = Rescale[N[Sin[π/2 Range[-nnodes, nnodes, 2]/nnodes]], {-1, 1}, {a, b}];
ynodes = func /@ xnodes;
wts = Developer`ToPackedArray@Table[(-1.)^n, {n, 0, nnodes}];
wts[[{1, -1}]] = 1/2.;
(* interpolating function if[] *)
if = Statistics`Library`BarycentricInterpolation[xnodes, ynodes, Weights -> wts];
errplot[{-15, -3}, {x, a - 0.1 (b - a), b + 0.1 (b - a)}, {y, -7.5, 7.5},
PlotLabel -> "Chebyshev interpolation"]
Plot[relerr[x] // RealExponent, {x, a, b}]
(* Gauss-Legendre interpolation *)
nnodes = 64;(* degree *)
{xnodes, wts} = Most@NIntegrate`GaussRuleData[nnodes + 1, MachinePrecision];
wts = (b - a) wts;
wts = (-1)^Range[0, nnodes] Sqrt[(1 - Rescale[xnodes, {0, 1}, {-1, 1}]^2) wts];
xnodes = Rescale[xnodes, {0, 1}, {a, b}];
ynodes = Developer`ToPackedArray[func /@ xnodes, Real];
if = Statistics`Library`BarycentricInterpolation[xnodes, ynodes, Weights -> wts];
errplot[{-14, -3}, {x, a - 0.1 (b - a), b + 0.1 (b - a)}, {y, -7.5, 7.5},
PlotLabel -> "Gauss-Legendre interpolation"]
Plot[relerr[x] // RealExponent, {x, a, b}]
(* regular grid: caveat the Runge phenomenon *)
nnodes = 64; (* degree *)
xnodes = Rescale[N[Range[0, nnodes]/nnodes], {0, 1}, {a, b}];
ynodes = func /@ xnodes;
if = Statistics`Library`BarycentricInterpolation[xnodes, ynodes];
errplot[{-14, -3}, {x, a - 0.1 (b - a), b + 0.1 (b - a)}, {y, -7.5, 7.5},
PlotLabel -> "Regular grid: caveat the Runge phenomenon"]
Plot[relerr[x] // RealExponent, {x, a, b}]
Here's the Chebyshev interpolation with some white noise on the order of $10^{-10}$ added. It reduces the accuracy on the real line by about 5-6 digits as expected with machine precision, but it also reduces the size of the ellipse (the minor axis parallel to the imaginary axis).
(* Chebyshev interpolation with noise *)
nnodes = 64;(* degree *)
xnodes = Rescale[N[Sin[π/2 Range[-nnodes, nnodes, 2]/nnodes]], {-1, 1}, {a, b}];
ynodes = func /@ xnodes;
ynodes += RandomReal[1*^-10 {-1, 1}, Length@ynodes]; (* add noise *)
wts = Developer`ToPackedArray@Table[(-1.)^n, {n, 0, nnodes}];
wts[[{1, -1}]] = 1/2.;
if = Statistics`Library`BarycentricInterpolation[xnodes, ynodes, Weights -> wts];
errplot[{-11, -3}, {x, a - 0.1 (b - a), b + 0.1 (b - a)}, {y, -7.5, 7.5},
PlotLabel -> "Chebyshev interpolation with noise"]
Plot[relerr[x] // RealExponent, {x, a, b}]
If you're satisfied with a less accurate interpolation, then a low-degree polynomial can be used, for which the Bernstein ellipse plays less of a role. Here's a regular interval with fewer points that gives a few digits of accuracy, but it gives such accuracy over a large segment of the complex plane:
(* "Regular grid: low degree, low accuracy" *)
nnodes = 20;(* degree *)
xnodes = Rescale[N[Range[0, nnodes]/nnodes], {0, 1}, {a, b}];
ynodes = func /@ xnodes;
if = Statistics`Library`BarycentricInterpolation[xnodes, ynodes];
errplot[{-14, -3}, {x, a - 0.1 (b - a), b + 0.1 (b - a)}, {y, -7.5, 7.5},
PlotLabel -> "Regular grid, low degree: greater convergence to lower accuracy"]
Plot[relerr[x] // RealExponent, {x, a, b}]
Update: Complex interpolation
Below is an interpolation through points on a circle in the complex plane with the diameter given by the real interval {a, b}
. This gives a highly accurate approximation of the function within the circle, provided the function has no poles inside or on the circle. (The peaks in relative error along the real line inside the disk are due the roots of the Bessel function func[z]
.)
(* Fourier interpolation on a complex disk *)
nn = 64; (* number of interpolation points *)
z0 = (a + b)/2; (* center of circle *)
rr = (a + b)/2; (* radius of circle *)
wp = MachinePrecision; (* working precision *)
tj = 2 Pi*Range[0, nn - 1]/nn;
zj = N[z0 + rr Exp[I tj], wp]; (* interpolation nodes *)
fj = func /@ zj; (* function values on nodes *)
if = Statistics`Library`BarycentricInterpolation[zj, fj,
Weights -> Exp[2 Pi I Range[0., nn - 1]/nn]];
errplot[{-15, -5},
{x, a - 0.1 (b - a), b + 0.1 (b - a)},
{y, -(a + b)/2 - 0.1 (b - a), (a + b)/2 + 0.1 (b - a)},
PlotLabel -> "Fourier interpolation on a complex disk"]
Appendix: Plotting utilities
In relerr[z]
there are some "smoothing" parameters, wp
and acc
. Since error can be noisy, especially in a log plot (via RealExponent[]
above) when the error is small, I've added a small constant on the order of rounding error at the working precision. These are akin to Precision
and Accuracy
in Mathematica. This speeds up Plot3D
by reducing adaptive refinement and affects the error negligibly.
(* error plot utilities *)
ClearAll[relerr, errleg, colorlist, errplot];
relerr[z_,
wp_: Rationalize[$MachinePrecision, 0],
acc_: Rationalize[$MachinePrecision, 0]] :=
10^-wp + Abs@(if[z] - func[z])/(10^-acc + Abs@func[z]);
colorlist0 = Join[
Table[Blend[{ColorData[97][2], White}, n/8], {n, 0, 4}],
Table[Blend[{ColorData[97][1], White}, n/8], {n, 0, 4}]];
colorlist[{min0_, max0_}] :=
With[{min = min0 - 1, max = max0 + 1},
PadRight[#, max - min + 1, #] &@RotateLeft[colorlist0, Mod[min, 10]]
];
errleg[{min0_, max0_}] :=
With[{min = min0 - 1, max = max0 + 1},
BarLegend[{colorlist[{min, max}], 10.^{min, max}},
10.^Range[min, max],
LegendLabel -> "Rel.err."]
];
SetAttributes[errplot, HoldAll];
errplot[errRange_, {x_, x1_, x2_}, {y_, y1_, y2_}, opts___] :=
Legended[
Plot3D[relerr[x + I y] // RealExponent, {x, x1, x2}, {y, y1, y2},
opts,
Mesh -> {Range @@ errRange}, MeshFunctions -> {#3 &},
MeshShading -> colorlist[errRange],
AxesLabel -> {HoldForm[x], HoldForm[I y], "log err"},
NormalsFunction -> None, ViewPoint -> {0, -1, 5},
PlotRange -> errRange + {-1, 0}, FaceGrids -> {{0, 0, 1}}],
errleg[errRange]
];
For analytic functions there is a theorem on analytic continuation. If you work in this class of functions, you can use the interpolation polynomial for analytic continuation, example:
f[x_] := Sin[x^2]
n = 20; abc = Range[0, n - 1]/(n - 1);
f1[x_] :=
InterpolatingPolynomial[Table[{x1, f[x1]}, {x1, abc*1.}], x];
f1[.5 + .3*I]
(*Out[]= 0.166541 + 0.300631 I *)
f[.5 + .3*I]
(*Out[]= 0.166541 + 0.300631 I *)