Compute $\lim\limits_{n\to\infty} \left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)^{{1}/{2}}\cdots\left(1+\frac{n}{n}\right)^{{1}/{n}}$

Note at the onset that $1+\frac{k}n\leqslant\mathrm e^{k/n}$ for every $k$ hence the $n$th product $P_n$ is such that $P_n\leqslant\mathrm e$, in particular, the sequence $(P_n)_{n\geqslant1}$ is bounded.

To show that $(P_n)_{n\geqslant1}$ actually converges and to identify its limit, note that, for every $n$, $$ \log(P_n)=\frac1n\sum\limits_{k=1}^nf\left(\frac{k}n\right), \qquad\text{with}\quad f(x)=\frac{\log(1+x)}x. $$ The function $f$ is continuous on $[0,1]$ (define $f(0)=1$) hence its Riemann sums converge to its integral and $P_n\to\mathrm e^\ell$ with $$ \ell=\int_0^1f(x)\mathrm dx=\int_0^1\left(\sum_{n\geqslant1}(-1)^{n+1}\frac{x^{n-1}}n\right)\mathrm dx=\sum_{n\geqslant1}\frac{(-1)^{n+1}}{n^2}=\frac{\pi^2}{12}. $$