Compute: $\lim_{n \rightarrow \infty}\sqrt{n}(A_{n+1} − A_n)$ where $A_n = \frac{1}{n}(a_1 + a_2 + \cdots + a_n)$
You almost solved the problem with your calculation. Now you just have to note that with $|a_n|\le1$ we have $|na_{n+1}-a_1-\dotso-a_n|\le2n$, so $|\frac1{\sqrt n(n+1)}(na_{n+1}-a_1-\dotso-a_n)|\le\frac{2n}{\sqrt n(n+1)}\to0$.