Computing camera pose with homography matrix based on 4 coplanar points

If you have your Homography, you can calculate the camera pose with something like this:

void cameraPoseFromHomography(const Mat& H, Mat& pose)
{
    pose = Mat::eye(3, 4, CV_32FC1);      // 3x4 matrix, the camera pose
    float norm1 = (float)norm(H.col(0));  
    float norm2 = (float)norm(H.col(1));  
    float tnorm = (norm1 + norm2) / 2.0f; // Normalization value

    Mat p1 = H.col(0);       // Pointer to first column of H
    Mat p2 = pose.col(0);    // Pointer to first column of pose (empty)

    cv::normalize(p1, p2);   // Normalize the rotation, and copies the column to pose

    p1 = H.col(1);           // Pointer to second column of H
    p2 = pose.col(1);        // Pointer to second column of pose (empty)

    cv::normalize(p1, p2);   // Normalize the rotation and copies the column to pose

    p1 = pose.col(0);
    p2 = pose.col(1);

    Mat p3 = p1.cross(p2);   // Computes the cross-product of p1 and p2
    Mat c2 = pose.col(2);    // Pointer to third column of pose
    p3.copyTo(c2);       // Third column is the crossproduct of columns one and two

    pose.col(3) = H.col(2) / tnorm;  //vector t [R|t] is the last column of pose
}

This method works form me. Good luck.


The answer proposed by Jav_Rock does not provide a valid solution for camera poses in three-dimensional space.

For estimating a tree-dimensional transform and rotation induced by a homography, there exist multiple approaches. One of them provides closed formulas for decomposing the homography, but they are very complex. Also, the solutions are never unique.

Luckily, OpenCV 3 already implements this decomposition (decomposeHomographyMat). Given an homography and a correctly scaled intrinsics matrix, the function provides a set of four possible rotations and translations.