Computing the cross product of two vectors in Fortran 90
This is kind of a late answer, but since I stumbled upon this and there is no real explanation yet for why your error occurred, I figured I'd add an explanation for everybody else who stumbles upon this question:
In your program, you define an array called cross
, which is of rank 1. Then you call the cross
function you define further down. Since the cross
function does not have an explicit interface (see M.S.B.'s answer), the compiler does not know about it at this point. What it does know about is the array you declared. If you write r = cross(m, n)
, the compiler thinks you want to access the element at position (m, n) of the array cross
. Since this array is of rank 1, but you supplied two arguments, you get the error
rank mismatch in array reference at (1) (2/1)
which means that you supplied two coordinates when the compiler was expecting one.
You can place the subroutines used in a program after a contains
keyword within the program. This eliminates the need for creating a module or adding the interface definition.
PROGRAM crosstest
IMPLICIT NONE
INTEGER, DIMENSION(3) :: m, n
INTEGER, DIMENSION(3) :: cross
INTEGER, DIMENSION(3) :: r
m=(/1, 2, 3/)
n=(/4, 5, 6/)
r=cross(m,n)
print *, r
CONTAINS
PURE FUNCTION cross(a, b)
INTEGER, DIMENSION(3) :: cross
INTEGER, DIMENSION(3), INTENT(IN) :: a, b
cross(1) = a(2) * b(3) - a(3) * b(2)
cross(2) = a(3) * b(1) - a(1) * b(3)
cross(3) = a(1) * b(2) - a(2) * b(1)
END FUNCTION cross
END PROGRAM crosstest
The best practice is to place your procedures (subroutines and functions) in a module and then "use" that module from your main program or other procedures. You don't need to "use" the module from other procedures of the same module. This will make the interface of the procedure explicit so that the calling program or procedure "knows" the characteristics of the arguments ... it allows the compiler to check for consistency between the arguments on both sides ... caller and callee .. this eliminates a lot of bugs.
Outside of the language standard, but in practice necessary: if you use one file, place the module before the main program that uses it. Otherwise the compiler will be unaware of it. so:
module my_subs
implicit none
contains
FUNCTION cross(a, b)
INTEGER, DIMENSION(3) :: cross
INTEGER, DIMENSION(3), INTENT(IN) :: a, b
cross(1) = a(2) * b(3) - a(3) * b(2)
cross(2) = a(3) * b(1) - a(1) * b(3)
cross(3) = a(1) * b(2) - a(2) * b(1)
END FUNCTION cross
end module my_subs
PROGRAM crosstest
use my_subs
IMPLICIT NONE
INTEGER, DIMENSION(3) :: m, n
INTEGER, DIMENSION(3) :: r
m= [ 1, 2, 3 ]
n= [ 4, 5, 6 ]
r=cross(m,n)
write (*, *) r
END PROGRAM crosstest