Concise way to draw this pyramid

n = 5;
Graphics3D[Table[Cuboid[{#[[1]], #[[2]], -i}] & /@ Tuples[Range[-i/2, i/2], 2], 
 {i, 0, n - 1}]]

enter image description here

A more concise version (thanks: Vitaliy Kaurov):

Graphics3D[Table[Cuboid[{#, #2, -i}] & @@@ Tuples[Range[-i/2, i/2], 2], {i, 0, n - 1}]]

Inspired by @kglr, now I got another simpler way

Graphics3D[Table[Cuboid[{x,y,-z}],{z,0,4},{y,-z/2,z/2},{x,-z/2,z/2}]]

or

Graphics3D[Table[{Cuboid[{x-z/2,y-z/2,-z}]},{z,5},{y,z},{x,z}]]

Not concise

n = 7;

Standardize[GraphEmbedding@GridGraph@#, Mean, 1&] & /@ Array[{#,#}&, n] // 
Cuboid /@ Join@@MapIndexed[Append[#1, - First@#2 +.5]&, #, {2}] & // Graphics3D

enter image description here

but fun to play with:

 n = 20;

 Standardize[ #(CycleGraph@#~GraphEmbedding~"CircularEmbedding"), Mean, 1&] & /@ Array[#&, n] // 
 Ball /@ Join@@MapIndexed[Append[#1, - 1.5 First@#2 +.5]&, #, {2}] & // Graphics3D

enter image description here