Consecutive/Rolling sums in a vector in R
What you have is a vector, not an array. You can use rollapply
function from zoo package to get what you need.
> x <- c(1, 2, 3, 10, 20, 30)
> #library(zoo)
> rollapply(x, 3, sum)
[1] 6 15 33 60
Take a look at ?rollapply
for further details on what rollapply
does and how to use it.
I put together a package for handling these kinds of 'roll'ing functions that offers functionality similar to zoo
's rollapply
, but with Rcpp on the backend. Check out RcppRoll on CRAN.
library(microbenchmark)
library(zoo)
library(RcppRoll)
x <- rnorm(1E5)
all.equal( m1 <- rollapply(x, 3, sum), m2 <- roll_sum(x, 3) )
## from flodel
rsum.cumsum <- function(x, n = 3L) {
tail(cumsum(x) - cumsum(c(rep(0, n), head(x, -n))), -n + 1)
}
microbenchmark(
unit="ms",
times=10,
rollapply(x, 3, sum),
roll_sum(x, 3),
rsum.cumsum(x, 3)
)
gives me
Unit: milliseconds
expr min lq median uq max neval
rollapply(x, 3, sum) 1056.646058 1068.867550 1076.550463 1113.71012 1131.230825 10
roll_sum(x, 3) 0.405992 0.442928 0.457642 0.51770 0.574455 10
rsum.cumsum(x, 3) 2.610119 2.821823 6.469593 11.33624 53.798711 10
You might find it useful if speed is a concern.
If speed is a concern, you could use a convolution filter and chop off the ends:
rsum.filter <- function(x, n = 3L) filter(x, rep(1, n))[-c(1, length(x))]
Or even faster, write it as the difference between two cumulative sums:
rsum.cumsum <- function(x, n = 3L) tail(cumsum(x) - cumsum(c(rep(0, n), head(x, -n))), -n + 1)
Both use base functions only. Some benchmarks:
x <- sample(1:1000)
rsum.rollapply <- function(x, n = 3L) rollapply(x, n, sum)
rsum.sapply <- function(x, n = 3L) sapply(1:(length(x)-n+1),function(i){
sum(x[i:(i+n-1)])})
library(microbenchmark)
microbenchmark(
rsum.rollapply(x),
rsum.sapply(x),
rsum.filter(x),
rsum.cumsum(x)
)
# Unit: microseconds
# expr min lq median uq max neval
# rsum.rollapply(x) 12891.315 13267.103 14635.002 17081.5860 28059.998 100
# rsum.sapply(x) 4287.533 4433.180 4547.126 5148.0205 12967.866 100
# rsum.filter(x) 170.165 208.661 269.648 290.2465 427.250 100
# rsum.cumsum(x) 97.539 130.289 142.889 159.3055 449.237 100
Also I imagine all methods will be faster if x
and all applied weights were integers instead of numerics.