Convert data from long format to wide format with multiple measure columns
reshape(my.df,
idvar = "ID",
timevar = "TIME",
direction = "wide")
gives
ID X.1 Y.1 X.2 Y.2 X.3 Y.3 X.4 Y.4 X.5 Y.5
1 A 1 16 4 19 7 22 10 25 13 28
2 B 2 17 5 20 8 23 11 26 14 29
3 C 3 18 6 21 9 24 12 27 15 30
In order to handle multiple variables like you want, you need to melt
the data you have before casting it.
library("reshape2")
dcast(melt(my.df, id.vars=c("ID", "TIME")), ID~variable+TIME)
which gives
ID X_1 X_2 X_3 X_4 X_5 Y_1 Y_2 Y_3 Y_4 Y_5
1 A 1 4 7 10 13 16 19 22 25 28
2 B 2 5 8 11 14 17 20 23 26 29
3 C 3 6 9 12 15 18 21 24 27 30
EDIT based on comment:
The data frame
num.id = 10
num.time=10
my.df <- data.frame(ID=rep(LETTERS[1:num.id], num.time),
TIME=rep(1:num.time, each=num.id),
X=1:(num.id*num.time),
Y=(num.id*num.time)+1:(2*length(1:(num.id*num.time))))
gives a different result (all entries are 2) because the ID
/TIME
combination does not indicate a unique row. In fact, there are two rows with each ID
/TIME
combinations. reshape2
assumes a single value for each possible combination of the variables and will apply a summary function to create a single variable is there are multiple entries. That is why there is the warning
Aggregation function missing: defaulting to length
You can get something that works if you add another variable which breaks that redundancy.
my.df$cycle <- rep(1:2, each=num.id*num.time)
dcast(melt(my.df, id.vars=c("cycle", "ID", "TIME")), cycle+ID~variable+TIME)
This works because cycle
/ID
/time
now uniquely defines a row in my.df
.