Convert graph format for Mathematica graph functions

I am assuming that you can import the data as a string

data = "[3,0],[3,0],[3,2],[5,1],[5,1],[5,4],[6,0],[6,1],[7,2],[7,7],
        [8,6],[9,4],[10,2],[11,4]"

Given that try these steps

Extract the numbers

digits = ToExpression[StringCases[data, DigitCharacter..]]
(* {3, 0, 3, 0, 3, 2, 5, 1, 5, 1, 5, 4, 6, 0, 6, 1, 7, 2, 7, 7,
    8, 6, 9, 4, 10, 2, 11, 4} *)

Use Partition to create pairs

pairs = Partition[digits, 2]
(* {{3, 0}, {3, 0}, {3, 2}, {5, 1}, {5, 1}, {5, 4}, {6, 0},
    {6, 1}, {7, 2}, {7, 7}, {8, 6}, {9, 4}, {10, 2}, {11, 4}} *)

Use a rule to convert {3,0} to 3->0 and generate a list

list = pairs /. {x_, y_} -> (x -> y)
(* {3 -> 0, 3 -> 0, 3 -> 2, 5 -> 1, 5 -> 1, 5 -> 4, 6 -> 0, 
    6 -> 1, 7 -> 2, 7 -> 7, 8 -> 6, 9 -> 4, 10 -> 2, 11 -> 4} *)

Then graph it

Graph[list]

Mathematica graphics

Update

In order to create {{3 -> 0, 1},{3 -> 0, 2},{3-> 2, 3}..} use MapIndexed with pairs as the input

MapIndexed[{#1[[1]] -> #1[[2]], #2[[1]]} &, pairs]
(* {{3 -> 0, 1}, {3 -> 0, 2}, {3 -> 2, 3}, {5 -> 1, 4}, 
    {5 -> 1, 5}, {5 -> 4, 6}, {6 -> 0, 7}, {6 -> 1, 8}, {7 -> 2, 9}, 
    {7 -> 7, 10}, {8 -> 6, 11}, {9 -> 4, 12}, {10 -> 2, 13},
    {11 -> 4, 14}}
*)

Given data (as defined by @Jack LaVigne),

data = "[3,0],[3,0],[3,2],[5,1],[5,1],[5,4],[6,0],[6,1],[7,2],[7,7],
        [8,6],[9,4],[10,2],[11,4]"

I might just have written

Graph[ToExpression["{" ~~ StringReplace[data, "[" -> "DirectedEdge["] ~~ "}"]]

to get the graph.


Stitching several functions together to get a function that takes a string containing edges in Maple format and all the options of Graph:

ClearAll[mapleEdgesToGraph]
mapleEdgesToGraph = Graph[ToExpression @* ToString @* List @* 
  StringReplace["[" -> "DirectedEdge["] @ #, ##2]&;

Example: Using data from Jack's answer:

mapleEdgesToGraph[data]

enter image description here

mapleEdgesToGraph[data, 
  GraphStyle -> "IndexLabeled", 
  EdgeStyle -> Blue, 
  GraphLayout -> "CircularEmbedding", 
  ImageSize -> Large]

enter image description here