Convert JSON data from Request into Pandas DataFrame

you can do it this way:

import requests
import pandas as pd

r = requests.get('http://www.starcapital.de/test/Res_Stockmarketvaluation_FundamentalKZ_Tbl.php')

j = r.json()

df = pd.DataFrame([[d['v'] for d in x['c']] for x in j['rows']],
                  columns=[d['label'] for d in j['cols']])

Result:

In [217]: df
Out[217]:
                   Country  Weight  CAPE    PE    PC   PB   PS   DY  RS 26W  RS 52W  Score
0                   Russia     1.1   5.9   9.1   5.1  1.0  0.9  3.7    1.22    1.35    1.0
1                    China     1.1  12.8   7.2   4.5  0.9  0.6  4.2    1.05    1.13    2.0
2                    Italy     1.0  12.7  31.5   5.7  1.2  0.6  3.3    1.13    1.11    3.0
3                  Austria     0.2  14.3  21.7   7.3  1.1  0.7  2.5    1.10    1.15    4.0
4                   Norway     0.4  12.8  32.4   7.4  1.6  1.2  4.0    1.10    1.17    5.0
5                  Hungary     0.0  12.5  49.8   7.5  1.4  0.7  2.3    1.12    1.19    6.0
6                    Spain     1.2  11.7  24.7   7.0  1.4  1.2  3.7    1.08    1.11    7.0
7                    Czech     0.0   8.9  13.6   6.1  1.3  1.0  6.7    1.03    1.05    8.0
8                   Brazil     1.3   9.8  42.1   7.4  1.6  1.2  3.0    1.06    1.24    9.0
9                 Portugal     0.1  11.3  29.0   4.8  1.5  0.7  3.9    1.05    1.06   10.0
..                     ...     ...   ...   ...   ...  ...  ...  ...     ...     ...    ...
42        EMERGING MARKETS    13.5  14.0  16.0   8.8  1.6  1.3  2.9    1.04    1.11    NaN
43        DEVELOPED EUROPE    22.4  16.6  26.5   9.9  1.8  1.1  3.2    1.06    1.08    NaN
44         EMERGING EUROPE     1.7   8.6  10.9   5.8  1.1  0.8  3.4    1.13    1.20    NaN
45        EMERGING AMERICA     3.0  15.2  30.1   9.4  1.9  1.2  2.4    1.03    1.11    NaN
46  DEVELOPED ASIA-PACIFIC    17.7   NaN  17.7   8.8  1.3  0.9  2.5    1.03    1.09    NaN
47   EMERGING ASIA-PACIFIC     6.9  14.9  15.1   9.1  1.8  1.4  2.7    1.01    1.08    NaN
48         EMERGING AFRICA     0.8   NaN  16.5  10.6  2.0  1.4  3.8    1.06    1.12    NaN
49             MIDDLE EAST     1.3   NaN  13.7  11.8  1.5  1.8  3.9    1.06    1.10    NaN
50                    BRIC     5.9  11.8  14.6   7.4  1.4  1.2  2.7    1.06    1.16    NaN
51     OTHER EMERGING MKT.     2.5   NaN  17.7  12.9  1.8  1.5  3.1    1.16    1.20    NaN

[52 rows x 11 columns]

Or, more simply:

import requests
import pandas as pd

r = requests.get('http://www.starcapital.de/test/Res_Stockmarketvaluation_FundamentalKZ_Tbl.php')

j = r.json()

df = pd.DataFrame.from_dict(j)