Convert JSON data from Request into Pandas DataFrame
you can do it this way:
import requests
import pandas as pd
r = requests.get('http://www.starcapital.de/test/Res_Stockmarketvaluation_FundamentalKZ_Tbl.php')
j = r.json()
df = pd.DataFrame([[d['v'] for d in x['c']] for x in j['rows']],
columns=[d['label'] for d in j['cols']])
Result:
In [217]: df
Out[217]:
Country Weight CAPE PE PC PB PS DY RS 26W RS 52W Score
0 Russia 1.1 5.9 9.1 5.1 1.0 0.9 3.7 1.22 1.35 1.0
1 China 1.1 12.8 7.2 4.5 0.9 0.6 4.2 1.05 1.13 2.0
2 Italy 1.0 12.7 31.5 5.7 1.2 0.6 3.3 1.13 1.11 3.0
3 Austria 0.2 14.3 21.7 7.3 1.1 0.7 2.5 1.10 1.15 4.0
4 Norway 0.4 12.8 32.4 7.4 1.6 1.2 4.0 1.10 1.17 5.0
5 Hungary 0.0 12.5 49.8 7.5 1.4 0.7 2.3 1.12 1.19 6.0
6 Spain 1.2 11.7 24.7 7.0 1.4 1.2 3.7 1.08 1.11 7.0
7 Czech 0.0 8.9 13.6 6.1 1.3 1.0 6.7 1.03 1.05 8.0
8 Brazil 1.3 9.8 42.1 7.4 1.6 1.2 3.0 1.06 1.24 9.0
9 Portugal 0.1 11.3 29.0 4.8 1.5 0.7 3.9 1.05 1.06 10.0
.. ... ... ... ... ... ... ... ... ... ... ...
42 EMERGING MARKETS 13.5 14.0 16.0 8.8 1.6 1.3 2.9 1.04 1.11 NaN
43 DEVELOPED EUROPE 22.4 16.6 26.5 9.9 1.8 1.1 3.2 1.06 1.08 NaN
44 EMERGING EUROPE 1.7 8.6 10.9 5.8 1.1 0.8 3.4 1.13 1.20 NaN
45 EMERGING AMERICA 3.0 15.2 30.1 9.4 1.9 1.2 2.4 1.03 1.11 NaN
46 DEVELOPED ASIA-PACIFIC 17.7 NaN 17.7 8.8 1.3 0.9 2.5 1.03 1.09 NaN
47 EMERGING ASIA-PACIFIC 6.9 14.9 15.1 9.1 1.8 1.4 2.7 1.01 1.08 NaN
48 EMERGING AFRICA 0.8 NaN 16.5 10.6 2.0 1.4 3.8 1.06 1.12 NaN
49 MIDDLE EAST 1.3 NaN 13.7 11.8 1.5 1.8 3.9 1.06 1.10 NaN
50 BRIC 5.9 11.8 14.6 7.4 1.4 1.2 2.7 1.06 1.16 NaN
51 OTHER EMERGING MKT. 2.5 NaN 17.7 12.9 1.8 1.5 3.1 1.16 1.20 NaN
[52 rows x 11 columns]
Or, more simply:
import requests
import pandas as pd
r = requests.get('http://www.starcapital.de/test/Res_Stockmarketvaluation_FundamentalKZ_Tbl.php')
j = r.json()
df = pd.DataFrame.from_dict(j)