Convert pandas DateTimeIndex to Unix Time?
As DatetimeIndex
is ndarray
under the hood, you can do the conversion without a comprehension (much faster).
In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from datetime import datetime
In [4]: dates = [datetime(2012, 5, 1), datetime(2012, 5, 2), datetime(2012, 5, 3)]
...: index = pd.DatetimeIndex(dates)
...:
In [5]: index.astype(np.int64)
Out[5]: array([1335830400000000000, 1335916800000000000, 1336003200000000000],
dtype=int64)
In [6]: index.astype(np.int64) // 10**9
Out[6]: array([1335830400, 1335916800, 1336003200], dtype=int64)
%timeit [t.value // 10 ** 9 for t in index]
10000 loops, best of 3: 119 us per loop
%timeit index.astype(np.int64) // 10**9
100000 loops, best of 3: 18.4 us per loop
Complementing the other answers: //10**9
will do a flooring divide, which gives full past seconds rather than the nearest value in seconds. A simple way to get more reasonable rounding, if that is desired, is to add 5*10**8 - 1
before doing the flooring divide.
A summary of other answers:
df['<time_col>'].astype(np.int64) // 10**9
If you want to keep the milliseconds divide by 10**6
instead
Note: Timestamp is just unix time with nanoseconds (so divide it by 10**9):
[t.value // 10 ** 9 for t in tsframe.index]
For example:
In [1]: t = pd.Timestamp('2000-02-11 00:00:00')
In [2]: t
Out[2]: <Timestamp: 2000-02-11 00:00:00>
In [3]: t.value
Out[3]: 950227200000000000L
In [4]: time.mktime(t.timetuple())
Out[4]: 950227200.0
As @root points out it's faster to extract the array of values directly:
tsframe.index.astype(np.int64) // 10 ** 9