Converting a Vision VNTextObservation to a String

Apple finally updated Vision to do OCR. Open a playground and dump a couple of test images in the Resources folder. In my case, I called them "demoDocument.jpg" and "demoLicensePlate.jpg".

The new class is called VNRecognizeTextRequest. Dump this in a playground and give it a whirl:

import Vision

enum DemoImage: String {
    case document = "demoDocument"
    case licensePlate = "demoLicensePlate"
}

class OCRReader {
    func performOCR(on url: URL?, recognitionLevel: VNRequestTextRecognitionLevel)  {
        guard let url = url else { return }
        let requestHandler = VNImageRequestHandler(url: url, options: [:])

        let request = VNRecognizeTextRequest  { (request, error) in
            if let error = error {
                print(error)
                return
            }

            guard let observations = request.results as? [VNRecognizedTextObservation] else { return }

            for currentObservation in observations {
                let topCandidate = currentObservation.topCandidates(1)
                if let recognizedText = topCandidate.first {
                    print(recognizedText.string)
                }
            }
        }
        request.recognitionLevel = recognitionLevel

        try? requestHandler.perform([request])
    }
}

func url(for image: DemoImage) -> URL? {
    return Bundle.main.url(forResource: image.rawValue, withExtension: "jpg")
}

let ocrReader = OCRReader()
ocrReader.performOCR(on: url(for: .document), recognitionLevel: .fast)

There's an in-depth discussion of this from WWDC19


This is how to do it ...

    //
//  ViewController.swift
//


import UIKit
import Vision
import CoreML

class ViewController: UIViewController {

    //HOLDS OUR INPUT
    var  inputImage:CIImage?

    //RESULT FROM OVERALL RECOGNITION
    var  recognizedWords:[String] = [String]()

    //RESULT FROM RECOGNITION
    var recognizedRegion:String = String()


    //OCR-REQUEST
    lazy var ocrRequest: VNCoreMLRequest = {
        do {
            //THIS MODEL IS TRAINED BY ME FOR FONT "Inconsolata" (Numbers 0...9 and UpperCase Characters A..Z)
            let model = try VNCoreMLModel(for:OCR().model)
            return VNCoreMLRequest(model: model, completionHandler: self.handleClassification)
        } catch {
            fatalError("cannot load model")
        }
    }()

    //OCR-HANDLER
    func handleClassification(request: VNRequest, error: Error?)
    {
        guard let observations = request.results as? [VNClassificationObservation]
            else {fatalError("unexpected result") }
        guard let best = observations.first
            else { fatalError("cant get best result")}

        self.recognizedRegion = self.recognizedRegion.appending(best.identifier)
    }

    //TEXT-DETECTION-REQUEST
    lazy var textDetectionRequest: VNDetectTextRectanglesRequest = {
        return VNDetectTextRectanglesRequest(completionHandler: self.handleDetection)
    }()

    //TEXT-DETECTION-HANDLER
    func handleDetection(request:VNRequest, error: Error?)
    {
        guard let observations = request.results as? [VNTextObservation]
            else {fatalError("unexpected result") }

       // EMPTY THE RESULTS
        self.recognizedWords = [String]()

        //NEEDED BECAUSE OF DIFFERENT SCALES
        let  transform = CGAffineTransform.identity.scaledBy(x: (self.inputImage?.extent.size.width)!, y:  (self.inputImage?.extent.size.height)!)

        //A REGION IS LIKE A "WORD"
        for region:VNTextObservation in observations
        {
            guard let boxesIn = region.characterBoxes else {
                continue
            }

            //EMPTY THE RESULT FOR REGION
            self.recognizedRegion = ""

            //A "BOX" IS THE POSITION IN THE ORIGINAL IMAGE (SCALED FROM 0... 1.0)
            for box in boxesIn
            {
                //SCALE THE BOUNDING BOX TO PIXELS
                let realBoundingBox = box.boundingBox.applying(transform)

                //TO BE SURE
                guard (inputImage?.extent.contains(realBoundingBox))!
                    else { print("invalid detected rectangle"); return}

                //SCALE THE POINTS TO PIXELS
                let topleft = box.topLeft.applying(transform)
                let topright = box.topRight.applying(transform)
                let bottomleft = box.bottomLeft.applying(transform)
                let bottomright = box.bottomRight.applying(transform)

                //LET'S CROP AND RECTIFY
                let charImage = inputImage?
                    .cropped(to: realBoundingBox)
                    .applyingFilter("CIPerspectiveCorrection", parameters: [
                        "inputTopLeft" : CIVector(cgPoint: topleft),
                        "inputTopRight" : CIVector(cgPoint: topright),
                        "inputBottomLeft" : CIVector(cgPoint: bottomleft),
                        "inputBottomRight" : CIVector(cgPoint: bottomright)
                        ])

                //PREPARE THE HANDLER
                let handler = VNImageRequestHandler(ciImage: charImage!, options: [:])

                //SOME OPTIONS (TO PLAY WITH..)
                self.ocrRequest.imageCropAndScaleOption = VNImageCropAndScaleOption.scaleFill

                //FEED THE CHAR-IMAGE TO OUR OCR-REQUEST - NO NEED TO SCALE IT - VISION WILL DO IT FOR US !!
                do {
                    try handler.perform([self.ocrRequest])
                }  catch { print("Error")}

            }

            //APPEND RECOGNIZED CHARS FOR THAT REGION
            self.recognizedWords.append(recognizedRegion)
        }

        //THATS WHAT WE WANT - PRINT WORDS TO CONSOLE
        DispatchQueue.main.async {
            self.PrintWords(words: self.recognizedWords)
        }
    }

    func PrintWords(words:[String])
    {
        // VOILA'
        print(recognizedWords)

    }

    func doOCR(ciImage:CIImage)
    {
        //PREPARE THE HANDLER
        let handler = VNImageRequestHandler(ciImage: ciImage, options:[:])

        //WE NEED A BOX FOR EACH DETECTED CHARACTER
        self.textDetectionRequest.reportCharacterBoxes = true
        self.textDetectionRequest.preferBackgroundProcessing = false

        //FEED IT TO THE QUEUE FOR TEXT-DETECTION
        DispatchQueue.global(qos: .userInteractive).async {
            do {
                try  handler.perform([self.textDetectionRequest])
            } catch {
                print ("Error")
            }
        }

    }

    override func viewDidLoad() {
        super.viewDidLoad()
        // Do any additional setup after loading the view, typically from a nib.

        //LETS LOAD AN IMAGE FROM RESOURCE
        let loadedImage:UIImage = UIImage(named: "Sample1.png")! //TRY Sample2, Sample3 too

        //WE NEED A CIIMAGE - NOT NEEDED TO SCALE
        inputImage = CIImage(image:loadedImage)!

        //LET'S DO IT
        self.doOCR(ciImage: inputImage!)


    }

    override func didReceiveMemoryWarning() {
        super.didReceiveMemoryWarning()
        // Dispose of any resources that can be recreated.
    }
}

You'll find the complete project here included is the trained model !


SwiftOCR

I just got SwiftOCR to work with small sets of text.

https://github.com/garnele007/SwiftOCR

uses

https://github.com/Swift-AI/Swift-AI

which uses NeuralNet-MNIST model for text recognition.

TODO : VNTextObservation > SwiftOCR

Will post example of it using VNTextObservation once I have it one connected to the other.

OpenCV + Tesseract OCR

I tried to use OpenCV + Tesseract but got compile errors then found SwiftOCR.

SEE ALSO : Google Vision iOS

Note Google Vision Text Recognition - Android sdk has text detection but also has iOS cocoapod. So keep an eye on it as should add text recognition to the iOS eventually.

https://developers.google.com/vision/text-overview

//Correction: just tried it but only Android version of the sdk supports text detection.

https://developers.google.com/vision/text-overview

If you subscribe to releases: https://libraries.io/cocoapods/GoogleMobileVision

Click SUBSCRIBE TO RELEASES you can see when TextDetection is added to the iOS part of the Cocoapod