create binary search tree program in c++ code example
Example 1: binary search program c++
#include <iostream>
using namespace std;
// This program performs a binary search through an array, must be sorted to work
int binarySearch(int array[], int size, int value)
{
int first = 0, // First array element
last = size - 1, // Last array element
middle, // Mid point of search
position = -1; // Position of search value
bool found = false; // Flag
while (!found && first <= last)
{
middle = (first + last) / 2; // Calculate mid point
if (array[middle] == value) // If value is found at mid
{
found = true;
position = middle;
}
else if (array[middle] > value) // If value is in lower half
last = middle - 1;
else
first = middle + 1; // If value is in upper half
}
return position;
}
int main ()
{
const int size = 5; // size initialization
int array[size] = {1, 2, 3, 4, 5}; // declare array of size 10
int value; // declare value to be searched for
int result; // declare variable that will be returned after binary search
cout << "What value would you like to search for? "; // prompt user to enter value
cin >> value;
result = binarySearch(array, size, value);
if (result == -1) // if value isn't found display this message
cout << "Not found\n";
else // If value is found, displays message
cout << "Your value is in the array.\n";
return 0;
}
Example 2: binary search tree program in c
// Binary Search Tree operations in C
#include <stdio.h>
#include <stdlib.h>
struct node {
int key;
struct node *left, *right;
};
// Create a node
struct node *newNode(int item) {
struct node *temp = (struct node *)malloc(sizeof(struct node));
temp->key = item;
temp->left = temp->right = NULL;
return temp;
}
// Inorder Traversal
void inorder(struct node *root) {
if (root != NULL) {
// Traverse left
inorder(root->left);
// Traverse root
printf("%d -> ", root->key);
// Traverse right
inorder(root->right);
}
}
// Insert a node
struct node *insert(struct node *node, int key) {
// Return a new node if the tree is empty
if (node == NULL) return newNode(key);
// Traverse to the right place and insert the node
if (key < node->key)
node->left = insert(node->left, key);
else
node->right = insert(node->right, key);
return node;
}
// Find the inorder successor
struct node *minValueNode(struct node *node) {
struct node *current = node;
// Find the leftmost leaf
while (current && current->left != NULL)
current = current->left;
return current;
}
// Deleting a node
struct node *deleteNode(struct node *root, int key) {
// Return if the tree is empty
if (root == NULL) return root;
// Find the node to be deleted
if (key < root->key)
root->left = deleteNode(root->left, key);
else if (key > root->key)
root->right = deleteNode(root->right, key);
else {
// If the node is with only one child or no child
if (root->left == NULL) {
struct node *temp = root->right;
free(root);
return temp;
} else if (root->right == NULL) {
struct node *temp = root->left;
free(root);
return temp;
}
// If the node has two children
struct node *temp = minValueNode(root->right);
// Place the inorder successor in position of the node to be deleted
root->key = temp->key;
// Delete the inorder successor
root->right = deleteNode(root->right, temp->key);
}
return root;
}
// Driver code
int main() {
struct node *root = NULL;
root = insert(root, 8);
root = insert(root, 3);
root = insert(root, 1);
root = insert(root, 6);
root = insert(root, 7);
root = insert(root, 10);
root = insert(root, 14);
root = insert(root, 4);
printf("Inorder traversal: ");
inorder(root);
printf("\nAfter deleting 10\n");
root = deleteNode(root, 10);
printf("Inorder traversal: ");
inorder(root);
}