Creating Plots for a Family of Solutions

I guess you have some sort of time evolution of Bessel-like waves. I also see that your examples deal with 3rd zero of Bessel J0 - I'll use it too. Define a function:

mYf[r_, t_, n_] := With[
    {k = BesselJZero[0, n]}, 
    (Cos[k t] + Sin[k t]) BesselJ[0, k r]
]

Build a time evolution list:

giflist = Table[
    RevolutionPlot3D[
        Evaluate[N@mYf[r, t, 3]],
        {r, 0, 1}, 
        SphericalRegion -> True,
        PlotRange -> {{-1, 1}, {-1, 1}, {-1.5, 1.5}},
        ImageSize -> 450,
        PlotStyle -> Opacity[.7],
        ColorFunction -> "TemperatureMap", 
        MeshStyle -> Opacity[.5],
        PlotLabel -> time == t
    ], 
    {t, 0, 2 Pi/N[BesselJZero[0, 3]], .05}
];

Display as animated .GIF -

Export["bessel.gif", giflist]

enter image description here

Display as a table:

GraphicsGrid[
    Partition[
        Show[#,Boxed ->False, Axes -> False] & /@ giflist,
        5
    ], 
    ImageSize -> 500,
    Spacings -> 0
]

enter image description here

Create an interface to investigate parameters. You BTW did not define dependence of a and b on n so I'll just define them generically:

Manipulate[
    RevolutionPlot3D[
        Evaluate[N@mYf[r, t, n, a, b, α]],
        {r, 0, 1},
        SphericalRegion -> True, 
        PlotRange -> {{-1, 1}, {-1, 1}, {-1.5, 1.5}},
        ImageSize -> 350,
        PlotStyle -> Opacity[.7],
        ColorFunction -> "TemperatureMap",
        MeshStyle -> Opacity[.5],
        PlotLabel -> time == t,
        PlotPoints -> 25
    ], 
    {{t, 1.36, "time"}, 0, 2, ImageSize -> Tiny},
    Delimiter,
    "zero's order", 
    {{n, 7, ""}, Range[7], SetterBar, ImageSize -> Tiny},
    Delimiter,
    {{a, 1.2, "a_n"}, 0, 2, ImageSize -> Tiny},
    {{b, 1, "b_n"}, 0, 2, ImageSize -> Tiny},
    {{α, .9, "α"}, 0, 2, ImageSize -> Tiny},
    FrameMargins -> 0,
    ImageMargins -> 0, 
    ControlPlacement -> Left, 
    Initialization :> (
        mYf[r_, t_, n_, a_, b_, α_] := 
            With[
                {k =  BesselJZero[0, n]},
                (a Cos[α k t] + 
                  b Sin[α k t]) *
                  BesselJ[0, k r]
            ]
    )
]

enter image description here


Let's say you want to plot a family of functions $f_{a,\,b,\,c}(x)=a\sin(b\,x^c)$ for $a\in\{-2,-1,1,2\}$, $b\in\{1,2\}$, $c\in\{1,2,3\}$:

(* Define the function itself *)
f[x_, a_, b_, c_] := a Sin[b x^c]

(* Generate a table consisting of all possible
   combinations for the values of a, b, c *)
fPlot = Table[
    f[#, a, b, c],
    {a, {-2, -1, 1, 2}},
    {b, 1, 2},
    {c, 1, 3}
];

(* Flatten it so it's a 2-dimensional list that
   can be plotted as usual *)
fPlot = Flatten[#, 1] & @ fPlot;

(* Convert it to a function, making use of the "#"
   introduced in the Table statement above *)
fPlot = Function[Evaluate@fPlot];

(* Plot it *)
Plot[fPlot[x] // Evaluate, {x, 0, 3}]

enter image description here