Creating Spark dataframe from numpy matrix

The problem is easy to solve. You're using the ml and the mllib API at the same time. Stick to one. Otherwise you get this error.

This is the solution for the mllibAPI:

import numpy as np
from pyspark.mllib.linalg import Vectors, VectorUDT
from pyspark.mllib.regression import LabeledPoint

df = np.concatenate([np.random.randint(0,2, size=(1000)), np.random.randn(1000), 3*np.random.randn(1000)+2, 6*np.random.randn(1000)-2]).reshape(1000,-1)
df = map(lambda x: LabeledPoint(x[0], Vectors.dense(x[1:])), df)

mydf = spark.createDataFrame(df,["label", "features"])

For the ml API, you don't really need LabeledPoint anymore. Here is an example. I would suggest to use the ml API since the mllib API is going to deprecated soon.


You are mixing functionality from ML and MLlib, which are not necessarily compatible. You don't need a LabeledPoint when using spark-ml:

sc.version
# u'2.1.1'

import numpy as np
from pyspark.ml.linalg import Vectors

df = np.concatenate([np.random.randint(0,2, size=(1000)), np.random.randn(1000), 3*np.random.randn(1000)+2, 6*np.random.randn(1000)-2]).reshape(1000,-1)
dff = map(lambda x: (int(x[0]), Vectors.dense(x[1:])), df)

mydf = spark.createDataFrame(dff,schema=["label", "features"])

mydf.show(5)
# +-----+-------------+ 
# |label|     features| 
# +-----+-------------+ 
# |    1|[0.0,0.0,0.0]| 
# |    0|[0.0,1.0,1.0]| 
# |    0|[0.0,1.0,0.0]| 
# |    1|[0.0,0.0,1.0]| 
# |    0|[0.0,1.0,0.0]|
# +-----+-------------+

PS: As of Spark 2.0, the RDD-based APIs in the spark.mllib package have entered maintenance mode. The primary Machine Learning API for Spark is now the DataFrame-based API in the spark.ml package. [ref.]


From Numpy to Pandas to Spark:

data = np.random.rand(4,4)
df = pd.DataFrame(data, columns=list('abcd'))
spark.createDataFrame(df).show()

Output:

+-------------------+-------------------+------------------+-------------------+
|                  a|                  b|                 c|                  d|
+-------------------+-------------------+------------------+-------------------+
| 0.8026427193838694|0.16867056812634307|0.2284873209015007|0.17141853164400833|
| 0.2559088794287595| 0.3896957084615589|0.3806810025185623| 0.9362280141470332|
|0.41313827425060257| 0.8087580640179158|0.5547653674054028| 0.5386190454838264|
| 0.2948395900484454| 0.4085807623354264|0.6814694724946697|0.32031773805256325|
+-------------------+-------------------+------------------+-------------------+