donut code example

Example: donut

const float theta_spacing = 0.07;
const float phi_spacing   = 0.02;

const float R1 = 1;
const float R2 = 2;
const float K2 = 5;
// Calculate K1 based on screen size: the maximum x-distance occurs
// roughly at the edge of the torus, which is at x=R1+R2, z=0.  we
// want that to be displaced 3/8ths of the width of the screen, which
// is 3/4th of the way from the center to the side of the screen.
// screen_width*3/8 = K1*(R1+R2)/(K2+0)
// screen_width*K2*3/(8*(R1+R2)) = K1
const float K1 = screen_width*K2*3/(8*(R1+R2));

render_frame(float A, float B) {
  // precompute sines and cosines of A and B
  float cosA = cos(A), sinA = sin(A);
  float cosB = cos(B), sinB = sin(B);

  char output[0..screen_width, 0..screen_height] = ' ';
  float zbuffer[0..screen_width, 0..screen_height] = 0;

  // theta goes around the cross-sectional circle of a torus
  for (float theta=0; theta < 2*pi; theta += theta_spacing) {
    // precompute sines and cosines of theta
    float costheta = cos(theta), sintheta = sin(theta);

    // phi goes around the center of revolution of a torus
    for(float phi=0; phi < 2*pi; phi += phi_spacing) {
      // precompute sines and cosines of phi
      float cosphi = cos(phi), sinphi = sin(phi);
    
      // the x,y coordinate of the circle, before revolving (factored
      // out of the above equations)
      float circlex = R2 + R1*costheta;
      float circley = R1*sintheta;

      // final 3D (x,y,z) coordinate after rotations, directly from
      // our math above
      float x = circlex*(cosB*cosphi + sinA*sinB*sinphi)
        - circley*cosA*sinB; 
      float y = circlex*(sinB*cosphi - sinA*cosB*sinphi)
        + circley*cosA*cosB;
      float z = K2 + cosA*circlex*sinphi + circley*sinA;
      float ooz = 1/z;  // "one over z"
      
      // x and y projection.  note that y is negated here, because y
      // goes up in 3D space but down on 2D displays.
      int xp = (int) (screen_width/2 + K1*ooz*x);
      int yp = (int) (screen_height/2 - K1*ooz*y);
      
      // calculate luminance.  ugly, but correct.
      float L = cosphi*costheta*sinB - cosA*costheta*sinphi -
        sinA*sintheta + cosB*(cosA*sintheta - costheta*sinA*sinphi);
      // L ranges from -sqrt(2) to +sqrt(2).  If it's < 0, the surface
      // is pointing away from us, so we won't bother trying to plot it.
      if (L > 0) {
        // test against the z-buffer.  larger 1/z means the pixel is
        // closer to the viewer than what's already plotted.
        if(ooz > zbuffer[xp,yp]) {
          zbuffer[xp, yp] = ooz;
          int luminance_index = L*8;
          // luminance_index is now in the range 0..11 (8*sqrt(2) = 11.3)
          // now we lookup the character corresponding to the
          // luminance and plot it in our output:
          output[xp, yp] = ".,-~:;=!*#$@"[luminance_index];
        }
      }
    }
  }

  // now, dump output[] to the screen.
  // bring cursor to "home" location, in just about any currently-used
  // terminal emulation mode
  printf("\x1b[H");
  for (int j = 0; j < screen_height; j++) {
    for (int i = 0; i < screen_width; i++) {
      putchar(output[i,j]);
    }
    putchar('\n');
  }
  
}

Tags:

Css Example