Cute problem: determinant of $I_n+(f_if_j)_{i,j}$
The eigenvalues of $(f_if_j)$ are $(\|f\|^2, 0,\dots,0)$ so those of your matrix are $(1+\|f\|^2, 1,\dots,1)$
The eigenvalues of $(f_if_j)$ are $(\|f\|^2, 0,\dots,0)$ so those of your matrix are $(1+\|f\|^2, 1,\dots,1)$