Definite integral, quotient of logarithm and polynomial: $I(\lambda)=\int_0^{\infty}\frac{\ln ^2x}{x^2+\lambda x+\lambda ^2}\text{d}x$
Here is a closed form solution for the integral
$$\int_0^1\frac{\ln ^2x}{x^2+x+1}\text{d}x=\frac{8\sqrt{3}}{243}\pi^3 \sim 1.768047624. $$
I have introduced a general technique, which is based on partial fraction combined with the use of dilogarithm function, to solve the integral
$$ \int _{a }^{b }\!{\frac {\ln \left( tx + u \right) }{m{x}^{2}+nx+p}}{dx}.$$
In your case, instead of using the dilogarithm function, we will use the polylogarithm function $\operatorname{Li}_{s}(z)$ and the whole problem boils down to evaluate integrals of the form
$$ \int_{0}^{1} \frac{\ln(x)^2}{x-\alpha}= -2 Li_{3}\left(\frac{1}{a}\right), $$
where
$$ \operatorname{Li}_{s}(z) = \sum_{k=1}^{\infty}\frac{z^k}{k^s}. $$
$$\int_0^1 \dfrac{\ln^2(x)}{1+x+x^2} = \int_0^1 \dfrac{1-x}{1-x^3} \ln^2(x) dx = \int_0^1 (1-x)\ln^2(x) \left(\sum_{k=0}^{\infty} x^{3k}\right) dx$$ Now note that $$\underbrace{\int_0^1 x^n \ln^2(x)dx = \int_{-\infty}^0 e^{nt} t^2 e^t dt}_{x \mapsto e^t} = \int_0^{\infty} t^2 e^{-(n+1)t}dt = \dfrac2{(1+n)^3}$$ Hence,$$\int_0^1 \dfrac{\ln^2(x)}{1+x+x^2} dx = \sum_{k=0}^{\infty} \left(\dfrac2{(1+3k)^3} - \dfrac2{(2+3k)^3} \right) = \dfrac{8 \pi^3}{81 \sqrt3}$$ Let us call $$\sum_{k=0}^{\infty} \dfrac1{(1+3k)^3} =f$$ and $$\sum_{k=0}^{\infty} \dfrac1{(2+3k)^3} =g$$ We are interested in $f-g$.
We have $$\text{Li}_3(\omega) = \sum_{k=1}^{\infty} \dfrac{\omega^k}{k^3} = \omega f + \omega^2 g + \dfrac{\zeta(3)}{27}$$ $$\text{Li}_3(\omega^2) = \sum_{k=1}^{\infty} \dfrac{\omega^{2k}}{k^3} = \omega^2 f + \omega g + \dfrac{\zeta(3)}{27}$$ where $\text{Li}_s(x)$ is the polylogarithm function defined as $$\text{Li}_s(x) = \sum_{k=0}^{\infty} \dfrac{x^k}{k^s}$$ Polylgarithm function satisfies a nice identity namely $$\text{Li}_n(e^{2 \pi ix}) + (-1)^n \text{Li}_n(e^{-2 \pi ix}) = - \dfrac{(2\pi i)^n}{n!}B_n(x)$$ where $B_n(x)$ are Bernoulli polynomials. Take $n=3$ and $x = 1/3$ to get that $$\text{Li}_3(\omega) - \text{Li}_3(\omega^2) = - \dfrac{(2\pi i)^3}{3!}B_3(1/3) = - \dfrac{(2\pi i)^3}{3!} \dfrac1{27} = \dfrac{8 \pi^3}{6 \times 27}i = \dfrac{4 \pi^3}{81}i$$ We also have that $$\text{Li}_3(\omega) - \text{Li}_3(\omega^2) = (\omega-\omega^2)(f-g) = \sqrt{3}i(f-g)$$ Hence, we get that $$f-g = \dfrac{4 \pi^3}{81 \sqrt3}$$ We can even get the values of $f$ and $g$ in terms of $\zeta(3)$. Note that $$f+g + \dfrac{\zeta(3)}{27} = \zeta(3) = \text{Li}_3(1)$$ Hence, $$f = \dfrac{13}{27} \zeta(3) + \dfrac{2 \pi^3}{81 \sqrt3}; \,\,\,\,\,\,\,\, g = \dfrac{13}{27} \zeta(3) - \dfrac{2 \pi^3}{81 \sqrt3}$$
$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$
${\tt\large\mbox{Just another one:}}$
\begin{align} &\color{#66f}{\large\int_{0}^{1}{\ln^{2}\pars{x} \over 1 + x + x^{2}}\,\dd x} =\lim_{\mu \to 0}\,\partiald[2]{}{\mu} \int_{0}^{1}{\pars{1 - x}x^{\mu} \over 1 - x^{3}}\,\dd x \\[3mm]&=\lim_{\mu \to 0}\,\partiald[2]{}{\mu}\int_{0}^{1} {x^{\mu/3} - x^{\pars{\mu + 1}/3} \over 1 - x}\,{1 \over 3}\,x^{-2/3}\dd x ={1 \over 3}\,\lim_{\mu \to 0}\,\partiald[2]{}{\mu}\int_{0}^{1} {x^{\pars{\mu - 2}/3} - x^{\pars{\mu - 1}/3} \over 1 - x}\,\dd x \\[3mm]&={1 \over 3}\,\lim_{\mu \to 0}\,\partiald[2]{}{\mu}\bracks{% \int_{0}^{1}{1 - x^{\pars{\mu - 1}/3} \over 1 - x}\,\dd x -\int_{0}^{1}{1 - x^{\pars{\mu - 2}/3} \over 1 - x}\,\dd x} \\[3mm]&={1 \over 3}\,\lim_{\mu \to 0}\,\partiald[2]{}{\mu} \bracks{\Psi\pars{\mu + 2 \over 3} - \Psi\pars{\mu + 1 \over 3}} ={1 \over 27}\bracks{\Psi''\pars{2 \over 3} - \Psi''\pars{1 \over 3}} \\[3mm]&={1 \over 27}\,\bracks{\pi\,\totald[2]{\cot\pars{\pi z}}{z}}_{z\ =\ ^1/_3}\ =\ {2\pi^{3} \over 27}\,\color{#c00000}{\cot\pars{\pi \over 3}} \color{#f0f}{\csc^{2}\pars{\pi \over 3}} ={2\pi^{3} \over 27}\,\color{#c00000}{{1 \over \root{3}}}\,\color{#f0f}{\pars{2 \over \root{3}}^{2}} \\[3mm]&=\color{#66f}{\large{8\root{3} \over 243}\,\pi^{3}} \approx 1.7680 \end{align}