Detect semicircle in OpenCV

Use houghCircle directly on your image, don't extract edges first. Then test for each detected circle, how much percentage is really present in the image:

int main()
{
    cv::Mat color = cv::imread("../houghCircles.png");
    cv::namedWindow("input"); cv::imshow("input", color);

    cv::Mat canny;

    cv::Mat gray;
    /// Convert it to gray
    cv::cvtColor( color, gray, CV_BGR2GRAY );

    // compute canny (don't blur with that image quality!!)
    cv::Canny(gray, canny, 200,20);
    cv::namedWindow("canny2"); cv::imshow("canny2", canny>0);

    std::vector<cv::Vec3f> circles;

    /// Apply the Hough Transform to find the circles
    cv::HoughCircles( gray, circles, CV_HOUGH_GRADIENT, 1, 60, 200, 20, 0, 0 );

    /// Draw the circles detected
    for( size_t i = 0; i < circles.size(); i++ ) 
    {
        Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
        int radius = cvRound(circles[i][2]);
        cv::circle( color, center, 3, Scalar(0,255,255), -1);
        cv::circle( color, center, radius, Scalar(0,0,255), 1 );
    }

    //compute distance transform:
    cv::Mat dt;
    cv::distanceTransform(255-(canny>0), dt, CV_DIST_L2 ,3);
    cv::namedWindow("distance transform"); cv::imshow("distance transform", dt/255.0f);

    // test for semi-circles:
    float minInlierDist = 2.0f;
    for( size_t i = 0; i < circles.size(); i++ ) 
    {
        // test inlier percentage:
        // sample the circle and check for distance to the next edge
        unsigned int counter = 0;
        unsigned int inlier = 0;

        cv::Point2f center((circles[i][0]), (circles[i][1]));
        float radius = (circles[i][2]);

        // maximal distance of inlier might depend on the size of the circle
        float maxInlierDist = radius/25.0f;
        if(maxInlierDist<minInlierDist) maxInlierDist = minInlierDist;

        //TODO: maybe paramter incrementation might depend on circle size!
        for(float t =0; t<2*3.14159265359f; t+= 0.1f) 
        {
            counter++;
            float cX = radius*cos(t) + circles[i][0];
            float cY = radius*sin(t) + circles[i][1];

            if(dt.at<float>(cY,cX) < maxInlierDist) 
            {
                inlier++;
                cv::circle(color, cv::Point2i(cX,cY),3, cv::Scalar(0,255,0));
            } 
           else
                cv::circle(color, cv::Point2i(cX,cY),3, cv::Scalar(255,0,0));
        }
        std::cout << 100.0f*(float)inlier/(float)counter << " % of a circle with radius " << radius << " detected" << std::endl;
    }

    cv::namedWindow("output"); cv::imshow("output", color);
    cv::imwrite("houghLinesComputed.png", color);

    cv::waitKey(-1);
    return 0;
}

For this input:

enter image description here

It gives this output:

enter image description here

The red circles are Hough results.

The green sampled dots on the circle are inliers.

The blue dots are outliers.

Console output:

100 % of a circle with radius 27.5045 detected
100 % of a circle with radius 25.3476 detected
58.7302 % of a circle with radius 194.639 detected
50.7937 % of a circle with radius 23.1625 detected
79.3651 % of a circle with radius 7.64853 detected

If you want to test RANSAC instead of Hough, have a look at this.


I know that it's little bit late, but I used different approach which is much easier. From the cv2.HoughCircles(...) you get centre of the circle and the diameter (x,y,r). So I simply go through all centre points of the circles and I check if they are further away from the edge of the image than their diameter.

Here is my code:

        height, width = img.shape[:2]

        #test top edge
        up = (circles[0, :, 0] - circles[0, :, 2]) >= 0

        #test left edge
        left = (circles[0, :, 1] - circles[0, :, 2]) >= 0

        #test right edge
        right = (circles[0, :, 0] + circles[0, :, 2]) <= width

        #test bottom edge
        down = (circles[0, :, 1] + circles[0, :, 2]) <= height

        circles = circles[:, (up & down & right & left), :]

Here is another way to do it, a simple RANSAC version (much optimization to be done to improve speed), that works on the Edge Image.

the method loops these steps until it is cancelled

  1. choose randomly 3 edge pixel
  2. estimate circle from them (3 points are enough to identify a circle)
  3. verify or falsify that it's really a circle: count how much percentage of the circle is represented by the given edges
  4. if a circle is verified, remove the circle from input/egdes

    int main()
    {
    //RANSAC
    
    //load edge image
    cv::Mat color = cv::imread("../circleDetectionEdges.png");
    
    // convert to grayscale
    cv::Mat gray;
    cv::cvtColor(color, gray, CV_RGB2GRAY);
    
    // get binary image
    cv::Mat mask = gray > 0;
    //erode the edges to obtain sharp/thin edges (undo the blur?)
    cv::erode(mask, mask, cv::Mat());
    
    std::vector<cv::Point2f> edgePositions;
    edgePositions = getPointPositions(mask);
    
    // create distance transform to efficiently evaluate distance to nearest edge
    cv::Mat dt;
    cv::distanceTransform(255-mask, dt,CV_DIST_L1, 3);
    
    //TODO: maybe seed random variable for real random numbers.
    
    unsigned int nIterations = 0;
    
    char quitKey = 'q';
    std::cout << "press " << quitKey << " to stop" << std::endl;
    while(cv::waitKey(-1) != quitKey)
    {
        //RANSAC: randomly choose 3 point and create a circle:
        //TODO: choose randomly but more intelligent, 
        //so that it is more likely to choose three points of a circle. 
        //For example if there are many small circles, it is unlikely to randomly choose 3 points of the same circle.
        unsigned int idx1 = rand()%edgePositions.size();
        unsigned int idx2 = rand()%edgePositions.size();
        unsigned int idx3 = rand()%edgePositions.size();
    
        // we need 3 different samples:
        if(idx1 == idx2) continue;
        if(idx1 == idx3) continue;
        if(idx3 == idx2) continue;
    
        // create circle from 3 points:
        cv::Point2f center; float radius;
        getCircle(edgePositions[idx1],edgePositions[idx2],edgePositions[idx3],center,radius);
    
        float minCirclePercentage = 0.4f;
    
        // inlier set unused at the moment but could be used to approximate a (more robust) circle from alle inlier
        std::vector<cv::Point2f> inlierSet;
    
        //verify or falsify the circle by inlier counting:
        float cPerc = verifyCircle(dt,center,radius, inlierSet);
    
        if(cPerc >= minCirclePercentage)
        {
            std::cout << "accepted circle with " << cPerc*100.0f << " % inlier" << std::endl;
            // first step would be to approximate the circle iteratively from ALL INLIER to obtain a better circle center
            // but that's a TODO
    
            std::cout << "circle: " << "center: " << center << " radius: " << radius << std::endl;
            cv::circle(color, center,radius, cv::Scalar(255,255,0),1);
    
            // accept circle => remove it from the edge list
            cv::circle(mask,center,radius,cv::Scalar(0),10);
    
            //update edge positions and distance transform
            edgePositions = getPointPositions(mask);
            cv::distanceTransform(255-mask, dt,CV_DIST_L1, 3);
        }
    
        cv::Mat tmp;
        mask.copyTo(tmp);
    
        // prevent cases where no fircle could be extracted (because three points collinear or sth.)
        // filter NaN values
        if((center.x == center.x)&&(center.y == center.y)&&(radius == radius))
        {
            cv::circle(tmp,center,radius,cv::Scalar(255));
        }
        else
        {
            std::cout << "circle illegal" << std::endl;
        }
    
        ++nIterations;
        cv::namedWindow("RANSAC"); cv::imshow("RANSAC", tmp);
    }
    
    std::cout << nIterations <<  " iterations performed" << std::endl;
    
    
    cv::namedWindow("edges"); cv::imshow("edges", mask);
    cv::namedWindow("color"); cv::imshow("color", color);
    
    cv::imwrite("detectedCircles.png", color);
    cv::waitKey(-1);
    return 0;
    }
    
    
    float verifyCircle(cv::Mat dt, cv::Point2f center, float radius, std::vector<cv::Point2f> & inlierSet)
    {
     unsigned int counter = 0;
     unsigned int inlier = 0;
     float minInlierDist = 2.0f;
     float maxInlierDistMax = 100.0f;
     float maxInlierDist = radius/25.0f;
     if(maxInlierDist<minInlierDist) maxInlierDist = minInlierDist;
     if(maxInlierDist>maxInlierDistMax) maxInlierDist = maxInlierDistMax;
    
     // choose samples along the circle and count inlier percentage
     for(float t =0; t<2*3.14159265359f; t+= 0.05f)
     {
         counter++;
         float cX = radius*cos(t) + center.x;
         float cY = radius*sin(t) + center.y;
    
         if(cX < dt.cols)
         if(cX >= 0)
         if(cY < dt.rows)
         if(cY >= 0)
         if(dt.at<float>(cY,cX) < maxInlierDist)
         {
            inlier++;
            inlierSet.push_back(cv::Point2f(cX,cY));
         }
     }
    
     return (float)inlier/float(counter);
    }
    
    
    inline void getCircle(cv::Point2f& p1,cv::Point2f& p2,cv::Point2f& p3, cv::Point2f& center, float& radius)
    {
      float x1 = p1.x;
      float x2 = p2.x;
      float x3 = p3.x;
    
      float y1 = p1.y;
      float y2 = p2.y;
      float y3 = p3.y;
    
      // PLEASE CHECK FOR TYPOS IN THE FORMULA :)
      center.x = (x1*x1+y1*y1)*(y2-y3) + (x2*x2+y2*y2)*(y3-y1) + (x3*x3+y3*y3)*(y1-y2);
      center.x /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) );
    
      center.y = (x1*x1 + y1*y1)*(x3-x2) + (x2*x2+y2*y2)*(x1-x3) + (x3*x3 + y3*y3)*(x2-x1);
      center.y /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) );
    
      radius = sqrt((center.x-x1)*(center.x-x1) + (center.y-y1)*(center.y-y1));
    }
    
    
    
    std::vector<cv::Point2f> getPointPositions(cv::Mat binaryImage)
    {
     std::vector<cv::Point2f> pointPositions;
    
     for(unsigned int y=0; y<binaryImage.rows; ++y)
     {
         //unsigned char* rowPtr = binaryImage.ptr<unsigned char>(y);
         for(unsigned int x=0; x<binaryImage.cols; ++x)
         {
             //if(rowPtr[x] > 0) pointPositions.push_back(cv::Point2i(x,y));
             if(binaryImage.at<unsigned char>(y,x) > 0) pointPositions.push_back(cv::Point2f(x,y));
         }
     }
    
     return pointPositions;
    }
    

input:

enter image description here

output:

enter image description here

console output:

    press q to stop
    accepted circle with 50 % inlier
    circle: center: [358.511, 211.163] radius: 193.849
    accepted circle with 85.7143 % inlier
    circle: center: [45.2273, 171.591] radius: 24.6215
    accepted circle with 100 % inlier
    circle: center: [257.066, 197.066] radius: 27.819
    circle illegal
    30 iterations performed`

optimization should include:

  1. use all inlier to fit a better circle

  2. dont compute distance transform after each detected circles (it's quite expensive). compute inlier from point/edge set directly and remove the inlier edges from that list.

  3. if there are many small circles in the image (and/or a lot of noise), it's unlikely to hit randomly 3 edge pixels or a circle. => try contour detection first and detect circles for each contour. after that try to detect all "other" circles left in the image.

  4. a lot of other stuff