Detect semicircle in OpenCV
Use houghCircle
directly on your image, don't extract edges first.
Then test for each detected circle, how much percentage is really present in the image:
int main()
{
cv::Mat color = cv::imread("../houghCircles.png");
cv::namedWindow("input"); cv::imshow("input", color);
cv::Mat canny;
cv::Mat gray;
/// Convert it to gray
cv::cvtColor( color, gray, CV_BGR2GRAY );
// compute canny (don't blur with that image quality!!)
cv::Canny(gray, canny, 200,20);
cv::namedWindow("canny2"); cv::imshow("canny2", canny>0);
std::vector<cv::Vec3f> circles;
/// Apply the Hough Transform to find the circles
cv::HoughCircles( gray, circles, CV_HOUGH_GRADIENT, 1, 60, 200, 20, 0, 0 );
/// Draw the circles detected
for( size_t i = 0; i < circles.size(); i++ )
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
cv::circle( color, center, 3, Scalar(0,255,255), -1);
cv::circle( color, center, radius, Scalar(0,0,255), 1 );
}
//compute distance transform:
cv::Mat dt;
cv::distanceTransform(255-(canny>0), dt, CV_DIST_L2 ,3);
cv::namedWindow("distance transform"); cv::imshow("distance transform", dt/255.0f);
// test for semi-circles:
float minInlierDist = 2.0f;
for( size_t i = 0; i < circles.size(); i++ )
{
// test inlier percentage:
// sample the circle and check for distance to the next edge
unsigned int counter = 0;
unsigned int inlier = 0;
cv::Point2f center((circles[i][0]), (circles[i][1]));
float radius = (circles[i][2]);
// maximal distance of inlier might depend on the size of the circle
float maxInlierDist = radius/25.0f;
if(maxInlierDist<minInlierDist) maxInlierDist = minInlierDist;
//TODO: maybe paramter incrementation might depend on circle size!
for(float t =0; t<2*3.14159265359f; t+= 0.1f)
{
counter++;
float cX = radius*cos(t) + circles[i][0];
float cY = radius*sin(t) + circles[i][1];
if(dt.at<float>(cY,cX) < maxInlierDist)
{
inlier++;
cv::circle(color, cv::Point2i(cX,cY),3, cv::Scalar(0,255,0));
}
else
cv::circle(color, cv::Point2i(cX,cY),3, cv::Scalar(255,0,0));
}
std::cout << 100.0f*(float)inlier/(float)counter << " % of a circle with radius " << radius << " detected" << std::endl;
}
cv::namedWindow("output"); cv::imshow("output", color);
cv::imwrite("houghLinesComputed.png", color);
cv::waitKey(-1);
return 0;
}
For this input:
It gives this output:
The red circles are Hough results.
The green sampled dots on the circle are inliers.
The blue dots are outliers.
Console output:
100 % of a circle with radius 27.5045 detected
100 % of a circle with radius 25.3476 detected
58.7302 % of a circle with radius 194.639 detected
50.7937 % of a circle with radius 23.1625 detected
79.3651 % of a circle with radius 7.64853 detected
If you want to test RANSAC instead of Hough, have a look at this.
I know that it's little bit late, but I used different approach which is much easier.
From the cv2.HoughCircles(...)
you get centre of the circle and the diameter (x,y,r). So I simply go through all centre points of the circles and I check if they are further away from the edge of the image than their diameter.
Here is my code:
height, width = img.shape[:2]
#test top edge
up = (circles[0, :, 0] - circles[0, :, 2]) >= 0
#test left edge
left = (circles[0, :, 1] - circles[0, :, 2]) >= 0
#test right edge
right = (circles[0, :, 0] + circles[0, :, 2]) <= width
#test bottom edge
down = (circles[0, :, 1] + circles[0, :, 2]) <= height
circles = circles[:, (up & down & right & left), :]
Here is another way to do it, a simple RANSAC version (much optimization to be done to improve speed), that works on the Edge Image.
the method loops these steps until it is cancelled
- choose randomly 3 edge pixel
- estimate circle from them (3 points are enough to identify a circle)
- verify or falsify that it's really a circle: count how much percentage of the circle is represented by the given edges
if a circle is verified, remove the circle from input/egdes
int main() { //RANSAC //load edge image cv::Mat color = cv::imread("../circleDetectionEdges.png"); // convert to grayscale cv::Mat gray; cv::cvtColor(color, gray, CV_RGB2GRAY); // get binary image cv::Mat mask = gray > 0; //erode the edges to obtain sharp/thin edges (undo the blur?) cv::erode(mask, mask, cv::Mat()); std::vector<cv::Point2f> edgePositions; edgePositions = getPointPositions(mask); // create distance transform to efficiently evaluate distance to nearest edge cv::Mat dt; cv::distanceTransform(255-mask, dt,CV_DIST_L1, 3); //TODO: maybe seed random variable for real random numbers. unsigned int nIterations = 0; char quitKey = 'q'; std::cout << "press " << quitKey << " to stop" << std::endl; while(cv::waitKey(-1) != quitKey) { //RANSAC: randomly choose 3 point and create a circle: //TODO: choose randomly but more intelligent, //so that it is more likely to choose three points of a circle. //For example if there are many small circles, it is unlikely to randomly choose 3 points of the same circle. unsigned int idx1 = rand()%edgePositions.size(); unsigned int idx2 = rand()%edgePositions.size(); unsigned int idx3 = rand()%edgePositions.size(); // we need 3 different samples: if(idx1 == idx2) continue; if(idx1 == idx3) continue; if(idx3 == idx2) continue; // create circle from 3 points: cv::Point2f center; float radius; getCircle(edgePositions[idx1],edgePositions[idx2],edgePositions[idx3],center,radius); float minCirclePercentage = 0.4f; // inlier set unused at the moment but could be used to approximate a (more robust) circle from alle inlier std::vector<cv::Point2f> inlierSet; //verify or falsify the circle by inlier counting: float cPerc = verifyCircle(dt,center,radius, inlierSet); if(cPerc >= minCirclePercentage) { std::cout << "accepted circle with " << cPerc*100.0f << " % inlier" << std::endl; // first step would be to approximate the circle iteratively from ALL INLIER to obtain a better circle center // but that's a TODO std::cout << "circle: " << "center: " << center << " radius: " << radius << std::endl; cv::circle(color, center,radius, cv::Scalar(255,255,0),1); // accept circle => remove it from the edge list cv::circle(mask,center,radius,cv::Scalar(0),10); //update edge positions and distance transform edgePositions = getPointPositions(mask); cv::distanceTransform(255-mask, dt,CV_DIST_L1, 3); } cv::Mat tmp; mask.copyTo(tmp); // prevent cases where no fircle could be extracted (because three points collinear or sth.) // filter NaN values if((center.x == center.x)&&(center.y == center.y)&&(radius == radius)) { cv::circle(tmp,center,radius,cv::Scalar(255)); } else { std::cout << "circle illegal" << std::endl; } ++nIterations; cv::namedWindow("RANSAC"); cv::imshow("RANSAC", tmp); } std::cout << nIterations << " iterations performed" << std::endl; cv::namedWindow("edges"); cv::imshow("edges", mask); cv::namedWindow("color"); cv::imshow("color", color); cv::imwrite("detectedCircles.png", color); cv::waitKey(-1); return 0; } float verifyCircle(cv::Mat dt, cv::Point2f center, float radius, std::vector<cv::Point2f> & inlierSet) { unsigned int counter = 0; unsigned int inlier = 0; float minInlierDist = 2.0f; float maxInlierDistMax = 100.0f; float maxInlierDist = radius/25.0f; if(maxInlierDist<minInlierDist) maxInlierDist = minInlierDist; if(maxInlierDist>maxInlierDistMax) maxInlierDist = maxInlierDistMax; // choose samples along the circle and count inlier percentage for(float t =0; t<2*3.14159265359f; t+= 0.05f) { counter++; float cX = radius*cos(t) + center.x; float cY = radius*sin(t) + center.y; if(cX < dt.cols) if(cX >= 0) if(cY < dt.rows) if(cY >= 0) if(dt.at<float>(cY,cX) < maxInlierDist) { inlier++; inlierSet.push_back(cv::Point2f(cX,cY)); } } return (float)inlier/float(counter); } inline void getCircle(cv::Point2f& p1,cv::Point2f& p2,cv::Point2f& p3, cv::Point2f& center, float& radius) { float x1 = p1.x; float x2 = p2.x; float x3 = p3.x; float y1 = p1.y; float y2 = p2.y; float y3 = p3.y; // PLEASE CHECK FOR TYPOS IN THE FORMULA :) center.x = (x1*x1+y1*y1)*(y2-y3) + (x2*x2+y2*y2)*(y3-y1) + (x3*x3+y3*y3)*(y1-y2); center.x /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) ); center.y = (x1*x1 + y1*y1)*(x3-x2) + (x2*x2+y2*y2)*(x1-x3) + (x3*x3 + y3*y3)*(x2-x1); center.y /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) ); radius = sqrt((center.x-x1)*(center.x-x1) + (center.y-y1)*(center.y-y1)); } std::vector<cv::Point2f> getPointPositions(cv::Mat binaryImage) { std::vector<cv::Point2f> pointPositions; for(unsigned int y=0; y<binaryImage.rows; ++y) { //unsigned char* rowPtr = binaryImage.ptr<unsigned char>(y); for(unsigned int x=0; x<binaryImage.cols; ++x) { //if(rowPtr[x] > 0) pointPositions.push_back(cv::Point2i(x,y)); if(binaryImage.at<unsigned char>(y,x) > 0) pointPositions.push_back(cv::Point2f(x,y)); } } return pointPositions; }
input:
output:
console output:
press q to stop
accepted circle with 50 % inlier
circle: center: [358.511, 211.163] radius: 193.849
accepted circle with 85.7143 % inlier
circle: center: [45.2273, 171.591] radius: 24.6215
accepted circle with 100 % inlier
circle: center: [257.066, 197.066] radius: 27.819
circle illegal
30 iterations performed`
optimization should include:
use all inlier to fit a better circle
dont compute distance transform after each detected circles (it's quite expensive). compute inlier from point/edge set directly and remove the inlier edges from that list.
if there are many small circles in the image (and/or a lot of noise), it's unlikely to hit randomly 3 edge pixels or a circle. => try contour detection first and detect circles for each contour. after that try to detect all "other" circles left in the image.
a lot of other stuff