Detecting cycles in a graph using DFS: 2 different approaches and what's the difference
Answering my question:
The graph has a cycle if and only if there exists a back edge. A back edge is an edge that is from a node to itself (selfloop) or one of its ancestor in the tree produced by DFS forming a cycle.
Both approaches above actually mean the same. However, this method can be applied only to undirected graphs.
The reason why this algorithm doesn't work for directed graphs is that in a directed graph 2 different paths to the same vertex don't make a cycle. For example: A-->B, B-->C, A-->C - don't make a cycle whereas in undirected ones: A--B, B--C, C--A does.
Find a cycle in undirected graphs
An undirected graph has a cycle if and only if a depth-first search (DFS) finds an edge that points to an already-visited vertex (a back edge).
Find a cycle in directed graphs
In addition to visited vertices we need to keep track of vertices currently in recursion stack of function for DFS traversal. If we reach a vertex that is already in the recursion stack, then there is a cycle in the tree.
Update: Working code is in the question section above.
For the sake of completion, it is possible to find cycles in a directed graph using DFS (from wikipedia):
L ← Empty list that will contain the sorted nodes
while there are unmarked nodes do
select an unmarked node n
visit(n)
function visit(node n)
if n has a temporary mark then stop (not a DAG)
if n is not marked (i.e. has not been visited yet) then
mark n temporarily
for each node m with an edge from n to m do
visit(m)
mark n permanently
unmark n temporarily
add n to head of L