Dictionary keys and values to separate numpy arrays
You can use np.fromiter
to directly create numpy
arrays from the dictionary key and values views:
In python 3:
keys = np.fromiter(Samples.keys(), dtype=float)
vals = np.fromiter(Samples.values(), dtype=float)
In python 2:
keys = np.fromiter(Samples.iterkeys(), dtype=float)
vals = np.fromiter(Samples.itervalues(), dtype=float)
On python 3.4, the following simply works:
Samples = {5.207403005022627: 0.69973543384229719, 6.8970222167794759: 0.080782939731898179, 7.8338517407140973: 0.10308033284258854, 8.5301143255505334: 0.018640838362318335, 10.418899728838058: 0.14427355015329846, 5.3983946820220501: 0.51319796560976771}
keys = np.array(list(Samples.keys()))
values = np.array(list(Samples.values()))
The reason np.array(Samples.values())
doesn't give what you expect in Python 3 is that in Python 3, the values() method of a dict returns an iterable view, whereas in Python 2, it returns an actual list of the keys.
keys = np.array(list(Samples.keys()))
will actually work in Python 2.7 as well, and will make your code more version agnostic. But the extra call to list()
will slow it down marginally.