Diffeomorphism of $\mathbb{C}P^1$ and $S^2$.
Here's a way of explicitly constructing a diffeomorphism.
Recall the stereographic charts on $S^2$, $(S^2\smallsetminus\{N\},\varphi_1)$ and $(S^2\smallsetminus\{S\},\varphi_2)$, i.e. $\varphi_1(x,y,z)=\frac{(x,y)}{1-z}$ and $\varphi_2(x,y,z)=\frac{(x,y)}{1+z}$. The transition map is $$\varphi_2\circ\varphi_1^{-1}(u,v)=\left(\frac{u}{u^2+v^2},\frac{v}{u^2+v^2}\right).$$
Recall also $\mathbb{CP}^1=\{[z:w]\mid z\neq 0\text{ or }w\neq 0\},$ with $[z:w]$ denoting the line through the origin and $(z,w)\in\mathbb{C}^2$. The typical charts are $(U_1,\psi_1)$ and $(U_2,\psi_2)$ where $U_1=\{[z:w]\mid z\neq 0\}$, $U_2=\{[z:w]\mid w\neq 0\}$, $$\psi_1[z:w]=wz^{-1}\in\mathbb{C}\cong\mathbb{R}^2\qquad\text{and}\qquad\psi_2[z:w]=\overline{zw^{-1}}\in\mathbb{C}\cong\mathbb{R}^2.$$ The transition map is $$\psi_2\circ\psi_1^{-1}(z)=\psi_2[1:z]=\overline{z}^{-1}$$ as a map from $\mathbb{C}$ to $\mathbb{C}$; viewing it instead as a map from $\mathbb{R}^2$ to $\mathbb{R}^2$ (i.e. taking $z=u+iv\cong(u,v)\in\mathbb{R}^2$), we have $$\psi_2\circ\psi_1^{-1}(u,v)=\left(\frac{u}{u^2+v^2},\frac{v}{u^2+v^2}\right).$$ Note that we chose $\psi_2[z:w]=\overline{zw^{-1}}$ instead of the more typical $\psi_2[z:w]=zw^{-1}$ so that $\varphi_2\circ\varphi_1^{-1}=\psi_2\circ\psi_1^{-1}.$
This suggests a natural correspondence between $S^2$ and $\mathbb{CP}^1$: define $\Phi:S^2\to\mathbb{CP}^1$ by $\Phi(\varphi_1^{-1}(u,v))=\psi_1^{-1}(u,v)$ and $\Phi(\varphi_2^{-1}(u,v))=\psi_2^{-1}(u,v)$, for any $(u,v)\in\mathbb{R}^2.$ This is a well defined map since if $\varphi_1^{-1}(u,v)=\varphi_2^{-1}(x,y)$ then $$(x,y)=\varphi_2\circ\varphi_1^{-1}(u,v)=\psi_2\circ\psi_1^{-1}(u,v),$$ so that $\psi_2^{-1}(x,y)=\psi_1^{-1}(u,v).$ In the same way, we have a well-defined inverse $\Phi^{-1}:\mathbb{CP}^1\to S^2$ defined by $\Phi^{-1}(\psi_1^{-1}(u,v))=\varphi_1^{-1}(u,v)$ and $\Phi^{-1}(\psi_2^{-1}(u,v))=\varphi_2^{-1}(u,v)$ for any $(u,v)\in\mathbb{R}^2.$ I'll leave it to you to check that $\Phi$ and $\Phi^{-1}$ are both smooth; of course this is easiest to do by checking that the local coordinate maps in terms of $\varphi_1,\varphi_2,\psi_1,\psi_2$ are smooth.
Beyond all of the details above, this just reflects the general fact that two manifolds are diffeomorphic when you can give them each a coordinate atlas with the same transition maps.
See Wikipedia page on the Riemann sphere:
The explicit map you are looking for is the following. Write $$S^2=\big\{(z,\alpha) \in \mathbb{C} \times \mathbb{R} \, \big| \, |z|^2+\alpha^2=1\big\}.$$ Then, employing the standard homogeneous coordinates on projective space, we have that the map \begin{align*} \varphi: S^2 & \to \mathbb{CP}^1 \\ (z,\alpha) & \mapsto [2z:1-\alpha] \end{align*} is a diffeomorphism.