Difference in make_shared and normal shared_ptr in C++
There is another case where the two possibilities differ, on top of those already mentioned: if you need to call a non-public constructor (protected or private), make_shared might not be able to access it, while the variant with the new works fine.
class A
{
public:
A(): val(0){}
std::shared_ptr<A> createNext(){ return std::make_shared<A>(val+1); }
// Invalid because make_shared needs to call A(int) **internally**
std::shared_ptr<A> createNext(){ return std::shared_ptr<A>(new A(val+1)); }
// Works fine because A(int) is called explicitly
private:
int val;
A(int v): val(v){}
};
The difference is that std::make_shared
performs one heap-allocation, whereas calling the std::shared_ptr
constructor performs two.
Where do the heap-allocations happen?
std::shared_ptr
manages two entities:
- the control block (stores meta data such as ref-counts, type-erased deleter, etc)
- the object being managed
std::make_shared
performs a single heap-allocation accounting for the space necessary for both the control block and the data. In the other case, new Obj("foo")
invokes a heap-allocation for the managed data and the std::shared_ptr
constructor performs another one for the control block.
For further information, check out the implementation notes at cppreference.
Update I: Exception-Safety
NOTE (2019/08/30): This is not a problem since C++17, due to the changes in the evaluation order of function arguments. Specifically, each argument to a function is required to fully execute before evaluation of other arguments.
Since the OP seem to be wondering about the exception-safety side of things, I've updated my answer.
Consider this example,
void F(const std::shared_ptr<Lhs> &lhs, const std::shared_ptr<Rhs> &rhs) { /* ... */ }
F(std::shared_ptr<Lhs>(new Lhs("foo")),
std::shared_ptr<Rhs>(new Rhs("bar")));
Because C++ allows arbitrary order of evaluation of subexpressions, one possible ordering is:
new Lhs("foo"))
new Rhs("bar"))
std::shared_ptr<Lhs>
std::shared_ptr<Rhs>
Now, suppose we get an exception thrown at step 2 (e.g., out of memory exception, Rhs
constructor threw some exception). We then lose memory allocated at step 1, since nothing will have had a chance to clean it up. The core of the problem here is that the raw pointer didn't get passed to the std::shared_ptr
constructor immediately.
One way to fix this is to do them on separate lines so that this arbitary ordering cannot occur.
auto lhs = std::shared_ptr<Lhs>(new Lhs("foo"));
auto rhs = std::shared_ptr<Rhs>(new Rhs("bar"));
F(lhs, rhs);
The preferred way to solve this of course is to use std::make_shared
instead.
F(std::make_shared<Lhs>("foo"), std::make_shared<Rhs>("bar"));
Update II: Disadvantage of std::make_shared
Quoting Casey's comments:
Since there there's only one allocation, the pointee's memory cannot be deallocated until the control block is no longer in use. A
weak_ptr
can keep the control block alive indefinitely.
Why do instances of weak_ptr
s keep the control block alive?
There must be a way for weak_ptr
s to determine if the managed object is still valid (eg. for lock
). They do this by checking the number of shared_ptr
s that own the managed object, which is stored in the control block. The result is that the control blocks are alive until the shared_ptr
count and the weak_ptr
count both hit 0.
Back to std::make_shared
Since std::make_shared
makes a single heap-allocation for both the control block and the managed object, there is no way to free the memory for control block and the managed object independently. We must wait until we can free both the control block and the managed object, which happens to be until there are no shared_ptr
s or weak_ptr
s alive.
Suppose we instead performed two heap-allocations for the control block and the managed object via new
and shared_ptr
constructor. Then we free the memory for the managed object (maybe earlier) when there are no shared_ptr
s alive, and free the memory for the control block (maybe later) when there are no weak_ptr
s alive.
The shared pointer manages both the object itself, and a small object containing the reference count and other housekeeping data. make_shared
can allocate a single block of memory to hold both of these; constructing a shared pointer from a pointer to an already-allocated object will need to allocate a second block to store the reference count.
As well as this efficiency, using make_shared
means that you don't need to deal with new
and raw pointers at all, giving better exception safety - there is no possibility of throwing an exception after allocating the object but before assigning it to the smart pointer.