dijkstra algorithm code example

Example 1: dijkstra algorithm c++

#include<bits/stdc++.h>
using namespace std;

int main()
{
	int n = 9;
	
	int mat[9][9] = { { 100,4,100,100,100,100,100,8,100}, 
                      { 4,100,8,100,100,100,100,11,100}, 
                      {100,8,100,7,100,4,100,100,2}, 
                      {100,100,7,100,9,14,100,100,100}, 
                      {100,100,100,9,100,100,100,100,100}, 
                      {100,100,4,14,10,100,2,100,100}, 
                      {100,100,100,100,100,2,100,1,6}, 
                      {8,11,100,100,100,100,1,100,7}, 
                      {100,100,2,100,100,100,6,7,100}};
	
	int src = 0;
	int count = 1;
	
	int path[n];
	for(int i=0;i<n;i++)
		path[i] = mat[src][i];
	
	int visited[n] = {0};
	visited[src] = 1;
	
	while(count<n)
	{
		int minNode;
		int minVal = 100;
		
		for(int i=0;i<n;i++)
			if(visited[i] == 0 && path[i]<minVal)
			{
				minVal = path[i];
				minNode = i;
			}
		
		visited[minNode] = 1;
		
		for(int i=0;i<n;i++)
			if(visited[i] == 0)
				path[i] = min(path[i],minVal+mat[minNode][i]);
					
		count++;
	}
	
	path[src] = 0;
	for(int i=0;i<n;i++)
		cout<<src<<" -> "<<path[i]<<endl;
	
	return(0);
}

Example 2: dijkstra's algorithm python

import sys


class Vertex:
    def __init__(self, node):
        self.id = node
        self.adjacent = {}
        # Set distance to infinity for all nodes
        self.distance = sys.maxsize
        # Mark all nodes unvisited
        self.visited = False
        # Predecessor
        self.previous = None

    def __lt__(self, other):
        return self.distance < other.distance

    def add_neighbor(self, neighbor, weight=0):
        self.adjacent[neighbor] = weight

    def get_connections(self):
        return self.adjacent.keys()

    def get_id(self):
        return self.id

    def get_weight(self, neighbor):
        return self.adjacent[neighbor]

    def set_distance(self, dist):
        self.distance = dist

    def get_distance(self):
        return self.distance

    def set_previous(self, prev):
        self.previous = prev

    def set_visited(self):
        self.visited = True

    def __str__(self):
        return str(self.id) + ' adjacent: ' + str([x.id for x in self.adjacent])


class Graph:
    def __init__(self):
        self.vert_dict = {}
        self.num_vertices = 0

    def __iter__(self):
        return iter(self.vert_dict.values())

    def add_vertex(self, node):
        self.num_vertices = self.num_vertices + 1
        new_vertex = Vertex(node)
        self.vert_dict[node] = new_vertex
        return new_vertex

    def get_vertex(self, n):
        if n in self.vert_dict:
            return self.vert_dict[n]
        else:
            return None

    def add_edge(self, frm, to, cost=0):
        if frm not in self.vert_dict:
            self.add_vertex(frm)
        if to not in self.vert_dict:
            self.add_vertex(to)

        self.vert_dict[frm].add_neighbor(self.vert_dict[to], cost)
        self.vert_dict[to].add_neighbor(self.vert_dict[frm], cost)

    def get_vertices(self):
        return self.vert_dict.keys()

    def set_previous(self, current):
        self.previous = current

    def get_previous(self, current):
        return self.previous


def shortest(v, path):
    ''' make shortest path from v.previous'''
    if v.previous:
        path.append(v.previous.get_id())
        shortest(v.previous, path)
    return


import heapq


def dijkstra(aGraph, start, target):
    print('''Dijkstra's shortest path''')
    # Set the distance for the start node to zero
    start.set_distance(0)

    # Put tuple pair into the priority queue
    unvisited_queue = [(v.get_distance(), v) for v in aGraph]
    heapq.heapify(unvisited_queue)

    while len(unvisited_queue):
        # Pops a vertex with the smallest distance
        uv = heapq.heappop(unvisited_queue)
        current = uv[1]
        current.set_visited()

        # for next in v.adjacent:
        for next in current.adjacent:
            # if visited, skip
            if next.visited:
                continue
            new_dist = current.get_distance() + current.get_weight(next)

            if new_dist < next.get_distance():
                next.set_distance(new_dist)
                next.set_previous(current)
                print('updated : current = %s next = %s new_dist = %s' \
                      % (current.get_id(), next.get_id(), next.get_distance()))
            else:
                print('not updated : current = %s next = %s new_dist = %s' \
                      % (current.get_id(), next.get_id(), next.get_distance()))

        # Rebuild heap
        # 1. Pop every item
        while len(unvisited_queue):
            heapq.heappop(unvisited_queue)
        # 2. Put all vertices not visited into the queue
        unvisited_queue = [(v.get_distance(), v) for v in aGraph if not v.visited]
        heapq.heapify(unvisited_queue)


if __name__ == '__main__':

    g = Graph()

    g.add_vertex('a')
    g.add_vertex('b')
    g.add_vertex('c')
    g.add_vertex('d')
    g.add_vertex('e')
    g.add_vertex('f')

    g.add_edge('a', 'b', 7)
    g.add_edge('a', 'c', 9)
    g.add_edge('a', 'f', 14)
    g.add_edge('b', 'c', 10)
    g.add_edge('b', 'd', 15)
    g.add_edge('c', 'd', 11)
    g.add_edge('c', 'f', 2)
    g.add_edge('d', 'e', 6)
    g.add_edge('e', 'f', 9)

    print('Graph data:')
    for v in g:
        for w in v.get_connections():
            vid = v.get_id()
            wid = w.get_id()
            print('( %s , %s, %3d)' % (vid, wid, v.get_weight(w)))

    dijkstra(g, g.get_vertex('a'), g.get_vertex('e'))

    target = g.get_vertex('e')
    path = [target.get_id()]
    shortest(target, path)
    print('The shortest path : %s' % (path[::-1]))

Example 3: dijkstra's algorithm python

import sys

class Vertex:
    def __init__(self, node):
        self.id = node
        self.adjacent = {}
        # Set distance to infinity for all nodes
        self.distance = sys.maxint
        # Mark all nodes unvisited        
        self.visited = False  
        # Predecessor
        self.previous = None

    def add_neighbor(self, neighbor, weight=0):
        self.adjacent[neighbor] = weight

    def get_connections(self):
        return self.adjacent.keys()  

    def get_id(self):
        return self.id

    def get_weight(self, neighbor):
        return self.adjacent[neighbor]

    def set_distance(self, dist):
        self.distance = dist

    def get_distance(self):
        return self.distance

    def set_previous(self, prev):
        self.previous = prev

    def set_visited(self):
        self.visited = True

    def __str__(self):
        return str(self.id) + ' adjacent: ' + str([x.id for x in self.adjacent])

class Graph:
    def __init__(self):
        self.vert_dict = {}
        self.num_vertices = 0

    def __iter__(self):
        return iter(self.vert_dict.values())

    def add_vertex(self, node):
        self.num_vertices = self.num_vertices + 1
        new_vertex = Vertex(node)
        self.vert_dict[node] = new_vertex
        return new_vertex

    def get_vertex(self, n):
        if n in self.vert_dict:
            return self.vert_dict[n]
        else:
            return None

    def add_edge(self, frm, to, cost = 0):
        if frm not in self.vert_dict:
            self.add_vertex(frm)
        if to not in self.vert_dict:
            self.add_vertex(to)

        self.vert_dict[frm].add_neighbor(self.vert_dict[to], cost)
        self.vert_dict[to].add_neighbor(self.vert_dict[frm], cost)

    def get_vertices(self):
        return self.vert_dict.keys()

    def set_previous(self, current):
        self.previous = current

    def get_previous(self, current):
        return self.previous

def shortest(v, path):
    ''' make shortest path from v.previous'''
    if v.previous:
        path.append(v.previous.get_id())
        shortest(v.previous, path)
    return

import heapq

def dijkstra(aGraph, start, target):
    print '''Dijkstra's shortest path'''
    # Set the distance for the start node to zero 
    start.set_distance(0)

    # Put tuple pair into the priority queue
    unvisited_queue = [(v.get_distance(),v) for v in aGraph]
    heapq.heapify(unvisited_queue)

    while len(unvisited_queue):
        # Pops a vertex with the smallest distance 
        uv = heapq.heappop(unvisited_queue)
        current = uv[1]
        current.set_visited()

        #for next in v.adjacent:
        for next in current.adjacent:
            # if visited, skip
            if next.visited:
                continue
            new_dist = current.get_distance() + current.get_weight(next)
            
            if new_dist < next.get_distance():
                next.set_distance(new_dist)
                next.set_previous(current)
                print 'updated : current = %s next = %s new_dist = %s' \
                        %(current.get_id(), next.get_id(), next.get_distance())
            else:
                print 'not updated : current = %s next = %s new_dist = %s' \
                        %(current.get_id(), next.get_id(), next.get_distance())

        # Rebuild heap
        # 1. Pop every item
        while len(unvisited_queue):
            heapq.heappop(unvisited_queue)
        # 2. Put all vertices not visited into the queue
        unvisited_queue = [(v.get_distance(),v) for v in aGraph if not v.visited]
        heapq.heapify(unvisited_queue)
    
if __name__ == '__main__':

    g = Graph()

    g.add_vertex('a')
    g.add_vertex('b')
    g.add_vertex('c')
    g.add_vertex('d')
    g.add_vertex('e')
    g.add_vertex('f')

    g.add_edge('a', 'b', 7)  
    g.add_edge('a', 'c', 9)
    g.add_edge('a', 'f', 14)
    g.add_edge('b', 'c', 10)
    g.add_edge('b', 'd', 15)
    g.add_edge('c', 'd', 11)
    g.add_edge('c', 'f', 2)
    g.add_edge('d', 'e', 6)
    g.add_edge('e', 'f', 9)

    print 'Graph data:'
    for v in g:
        for w in v.get_connections():
            vid = v.get_id()
            wid = w.get_id()
            print '( %s , %s, %3d)'  % ( vid, wid, v.get_weight(w))

    dijkstra(g, g.get_vertex('a'), g.get_vertex('e')) 

    target = g.get_vertex('e')
    path = [target.get_id()]
    shortest(target, path)
    print 'The shortest path : %s' %(path[::-1])

Example 4: dijkstra algorithm

//djikstra's algorithm using a weighted graph (STL)
//code by Soumyadepp
//insta: @soumyadepp
//linkedinID: https://www.linkedin.com/in/soumyadeep-ghosh-90a1951b6/

#include <bits/stdc++.h>
#define ll long long
using namespace std;

//to find the closest unvisited vertex from the source
//note that numbering of vertices starts from 1 here. Calculate accordingly
ll minDist(ll dist[], ll n, bool visited[])
{
    ll min = INT_MAX;
    ll minIndex = 0;
    for (ll i = 1; i <= n; i++)
    {
        if (!visited[i] && dist[i] <= min)
        {
            min = dist[i];
            minIndex = i;
        }
    }
    return minIndex;
}

//djikstra's algorithm for single source shortest path
void djikstra(vector<pair<ll, ll>> *g, ll n, ll src)
{
    bool visited[n + 1];
    ll dist[n + 1];
    for (ll i = 0; i <= n; i++)
    {
        dist[i] = INT_MAX;
        visited[i] = false;
    }

    dist[src] = 0;

    for (ll i = 0; i < n - 1; i++)
    {
        ll u = minDist(dist, n, visited);
        visited[u] = true;
        for (ll v = 0; v < g[u].size(); v++)
        {
            if (dist[u] + g[u][v].second < dist[g[u][v].first])
            {
                dist[g[u][v].first] = dist[u] + g[u][v].second;
            }
        }
    }
    cout << "VERTEX : DISTANCE" << endl;
    for (ll i = 1; i <= n; i++)
    {
        if (dist[i] != INT_MAX)
            cout << i << "         " << dist[i] << endl;
        else
            cout << i << "         "
                 << "not reachable" << endl;
    }
    cout << endl;
}

int main()
{
    //to store the adjacency list which also contains the weight
    vector<pair<ll, ll>> *graph;
    ll n, e, x, y, w, src;
    cout << "Enter number of vertices and edges in the graph" << endl;
    cin >> n >> e;
    graph = new vector<pair<ll, ll>>[n + 1];
    cout << "Enter edges and weight" << endl;
    for (ll i = 0; i < e; i++)
    {
        cin >> x >> y >> w;
        //checking for invalid edges and negative weights.
        if (x <= 0 || y <= 0 || w <= 0)
        {
            cout << "Invalid parameters. Exiting" << endl;
            exit(-1);
        }
        graph[x].push_back(make_pair(y, w));
        graph[y].push_back(make_pair(x, w));
    }
    cout << "Enter source from which you want to find shortest paths" << endl;
    cin >> src;
    if (src >= 1 && src <= n)
        djikstra(graph, n, src);
    else
        cout << "Please enter a valid vertex as the source" << endl;
    return 0;
}

//time complexity : O(ElogV)
//space complexity: O(V)

Example 5: Dijkstra's Weighted Graph Shortest Path in c++

#include <limits.h> 
#include <stdio.h> 
  

#define V 9 
  

int minDistance(int dist[], bool sptSet[]) 
{ 

    int min = INT_MAX, min_index; 
  
    for (int v = 0; v < V; v++) 
        if (sptSet[v] == false && dist[v] <= min) 
            min = dist[v], min_index = v; 
  
    return min_index; 
} 
  

void printSolution(int dist[]) 
{ 
    printf("Vertex \t\t Distance from Source\n"); 
    for (int i = 0; i < V; i++) 
        printf("%d \t\t %d\n", i, dist[i]); 
} 
  

void dijkstra(int graph[V][V], int src) 
{ 
    int dist[V]; 
    
  
    bool sptSet[V];
 
    for (int i = 0; i < V; i++) 
        dist[i] = INT_MAX, sptSet[i] = false; 
  
  
    dist[src] = 0; 
  
  
    for (int count = 0; count < V - 1; count++) { 
       
        int u = minDistance(dist, sptSet); 
  
       
        sptSet[u] = true; 
  
       
        for (int v = 0; v < V; v++) 
  
           
            if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX 
                && dist[u] + graph[u][v] < dist[v]) 
                dist[v] = dist[u] + graph[u][v]; 
    } 
  
 
    printSolution(dist); 
} 
  

int main() 
{ 
    
    int graph[V][V] = { { 0, 4, 0, 0, 0, 0, 0, 8, 0 }, 
                        { 4, 0, 8, 0, 0, 0, 0, 11, 0 }, 
                        { 0, 8, 0, 7, 0, 4, 0, 0, 2 }, 
                        { 0, 0, 7, 0, 9, 14, 0, 0, 0 }, 
                        { 0, 0, 0, 9, 0, 10, 0, 0, 0 }, 
                        { 0, 0, 4, 14, 10, 0, 2, 0, 0 }, 
                        { 0, 0, 0, 0, 0, 2, 0, 1, 6 }, 
                        { 8, 11, 0, 0, 0, 0, 1, 0, 7 }, 
                        { 0, 0, 2, 0, 0, 0, 6, 7, 0 } }; 
  
    dijkstra(graph, 0); 
  
    return 0; 
}

Example 6: dijkstra's algorithm

# Providing the graph
n = int(input("Enter the number of vertices of the graph"))

# using adjacency matrix representation 
vertices = [[0, 0, 1, 1, 0, 0, 0],
            [0, 0, 1, 0, 0, 1, 0],
            [1, 1, 0, 1, 1, 0, 0],
            [1, 0, 1, 0, 0, 0, 1],
            [0, 0, 1, 0, 0, 1, 0],
            [0, 1, 0, 0, 1, 0, 1],
            [0, 0, 0, 1, 0, 1, 0]]

edges = [[0, 0, 1, 2, 0, 0, 0],
         [0, 0, 2, 0, 0, 3, 0],
         [1, 2, 0, 1, 3, 0, 0],
         [2, 0, 1, 0, 0, 0, 1],
         [0, 0, 3, 0, 0, 2, 0],
         [0, 3, 0, 0, 2, 0, 1],
         [0, 0, 0, 1, 0, 1, 0]]

# Find which vertex is to be visited next
def to_be_visited():
    global visited_and_distance
    v = -10
    for index in range(num_of_vertices):
        if visited_and_distance[index][0] == 0 \
            and (v < 0 or visited_and_distance[index][1] <=
                 visited_and_distance[v][1]):
            v = index
    return v


num_of_vertices = len(vertices[0])

visited_and_distance = [[0, 0]]
for i in range(num_of_vertices-1):
    visited_and_distance.append([0, sys.maxsize])

for vertex in range(num_of_vertices):

    # Find next vertex to be visited
    to_visit = to_be_visited()
    for neighbor_index in range(num_of_vertices):

        # Updating new distances
        if vertices[to_visit][neighbor_index] == 1 and 
                visited_and_distance[neighbor_index][0] == 0:
            new_distance = visited_and_distance[to_visit][1] 
                + edges[to_visit][neighbor_index]
            if visited_and_distance[neighbor_index][1] > new_distance:
                visited_and_distance[neighbor_index][1] = new_distance
        
        visited_and_distance[to_visit][0] = 1

i = 0

# Printing the distance
for distance in visited_and_distance:
    print("Distance of ", chr(ord('a') + i),
          " from source vertex: ", distance[1])
    i = i + 1

Tags: