dijkstra algorithm with states code example

Example: dijkstra's algorithm

# Providing the graph
n = int(input("Enter the number of vertices of the graph"))

# using adjacency matrix representation 
vertices = [[0, 0, 1, 1, 0, 0, 0],
            [0, 0, 1, 0, 0, 1, 0],
            [1, 1, 0, 1, 1, 0, 0],
            [1, 0, 1, 0, 0, 0, 1],
            [0, 0, 1, 0, 0, 1, 0],
            [0, 1, 0, 0, 1, 0, 1],
            [0, 0, 0, 1, 0, 1, 0]]

edges = [[0, 0, 1, 2, 0, 0, 0],
         [0, 0, 2, 0, 0, 3, 0],
         [1, 2, 0, 1, 3, 0, 0],
         [2, 0, 1, 0, 0, 0, 1],
         [0, 0, 3, 0, 0, 2, 0],
         [0, 3, 0, 0, 2, 0, 1],
         [0, 0, 0, 1, 0, 1, 0]]

# Find which vertex is to be visited next
def to_be_visited():
    global visited_and_distance
    v = -10
    for index in range(num_of_vertices):
        if visited_and_distance[index][0] == 0 \
            and (v < 0 or visited_and_distance[index][1] <=
                 visited_and_distance[v][1]):
            v = index
    return v


num_of_vertices = len(vertices[0])

visited_and_distance = [[0, 0]]
for i in range(num_of_vertices-1):
    visited_and_distance.append([0, sys.maxsize])

for vertex in range(num_of_vertices):

    # Find next vertex to be visited
    to_visit = to_be_visited()
    for neighbor_index in range(num_of_vertices):

        # Updating new distances
        if vertices[to_visit][neighbor_index] == 1 and 
                visited_and_distance[neighbor_index][0] == 0:
            new_distance = visited_and_distance[to_visit][1] 
                + edges[to_visit][neighbor_index]
            if visited_and_distance[neighbor_index][1] > new_distance:
                visited_and_distance[neighbor_index][1] = new_distance
        
        visited_and_distance[to_visit][0] = 1

i = 0

# Printing the distance
for distance in visited_and_distance:
    print("Distance of ", chr(ord('a') + i),
          " from source vertex: ", distance[1])
    i = i + 1