Dimension of shape in conv1D
I have mentioned this in other posts also:
To input a usual feature table data of shape (nrows, ncols)
to Conv1d of Keras, following 2 steps are needed:
xtrain.reshape(nrows, ncols, 1)
# For conv1d statement:
input_shape = (ncols, 1)
For example, taking first 4 features of iris dataset:
To see usual format and its shape:
iris_array = np.array(irisdf.iloc[:,:4].values)
print(iris_array[:5])
print(iris_array.shape)
The output shows usual format and its shape:
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]]
(150, 4)
Following code alters the format:
nrows, ncols = iris_array.shape
iris_array = iris_array.reshape(nrows, ncols, 1)
print(iris_array[:5])
print(iris_array.shape)
Output of above code data format and its shape:
[[[5.1]
[3.5]
[1.4]
[0.2]]
[[4.9]
[3. ]
[1.4]
[0.2]]
[[4.7]
[3.2]
[1.3]
[0.2]]
[[4.6]
[3.1]
[1.5]
[0.2]]
[[5. ]
[3.6]
[1.4]
[0.2]]]
(150, 4, 1)
This works well for Conv1d of Keras. For input_shape (4,1)
is needed.
td; lr you need to reshape you data to have a spatial dimension for Conv1d
to make sense:
X = np.expand_dims(X, axis=2) # reshape (569, 30) to (569, 30, 1)
# now input can be set as
model.add(Conv1D(2,2,activation='relu',input_shape=(30, 1))
Essentially reshaping a dataset that looks like this:
features
.8, .1, .3
.2, .4, .6
.7, .2, .1
To:
[[.8
.1
.3],
[.2,
.4,
.6
],
[.7,
.2,
.1]]
Explanation and examples
Normally convolution works over spatial dimensions. The kernel is "convolved" over the dimension producing a tensor. In the case of Conv1D, the kernel is passed over the 'steps' dimension of every example.
You will see Conv1D used in NLP where steps
is a number of words in the sentence (padded to some fixed maximum length). The words would be encoded as vectors of length 4.
Here is an example sentence:
jack .1 .3 -.52 |
is .05 .8, -.7 |<--- kernel is `convolving` along this dimension.
a .5 .31 -.2 |
boy .5 .8 -.4 \|/
And the way we would set the input to the conv in this case:
maxlen = 4
input_dim = 3
model.add(Conv1D(2,2,activation='relu',input_shape=(maxlen, input_dim))
In your case, you will treat the features as the spatial dimensions with each feature having length 1. (see below)
Here would be an example from your dataset
att1 .04 |
att2 .05 | < -- kernel convolving along this dimension
att3 .1 | notice the features have length 1. each
att4 .5 \|/ example have these 4 featues.
And we would set the Conv1D example as:
maxlen = num_features = 4 # this would be 30 in your case
input_dim = 1 # since this is the length of _each_ feature (as shown above)
model.add(Conv1D(2,2,activation='relu',input_shape=(maxlen, input_dim))
As you see your dataset has to be reshaped in to (569, 30, 1) use:
X = np.expand_dims(X, axis=2) # reshape (569, 30, 1)
# now input can be set as
model.add(Conv1D(2,2,activation='relu',input_shape=(30, 1))
Here is a full-fledged example that you can run (I'll use the Functional API)
from keras.models import Model
from keras.layers import Conv1D, Dense, MaxPool1D, Flatten, Input
import numpy as np
inp = Input(shape=(5, 1))
conv = Conv1D(filters=2, kernel_size=2)(inp)
pool = MaxPool1D(pool_size=2)(conv)
flat = Flatten()(pool)
dense = Dense(1)(flat)
model = Model(inp, dense)
model.compile(loss='mse', optimizer='adam')
print(model.summary())
# get some data
X = np.expand_dims(np.random.randn(10, 5), axis=2)
y = np.random.randn(10, 1)
# fit model
model.fit(X, y)