Distribution at First Time a Sum Reaches a Threshold
Let $p^M_i$ be the probability that $X_{\tau(M)}=M+i$ for $i=0,1,\dots,5$, and $p^M$ denote the column vector of these six values.
You can compute $p_M$ from $p_{M-1}$ as follows. There are two ways to achieve a final value of $M+i$; either the first time that you value at or above $M-1$ you reach is $(M-1)+(i+1)$, or the first value at or above $M-1$ you reach is $M-1$, and then from there you jump immediately to $M+i$. Therefore, $$ p_i^M=\begin{cases}p^{M-1}_{i+1}+\frac16 p^{M-1}_0 & i<5\\\frac16p_0^{M-1} & i=5\end{cases} $$ This can be written as a matrix equation: $$ p^M=\begin{bmatrix} \frac16 & 1 & \\ \frac16 &0 & 1 &\\ \frac16 & 0&0 & 1 &\\ \frac16 & 0&0&0& 1 &\\ \frac16 & 0&0&0&0& 1 \\ \frac16 & 0&0 &0&0&0\\ \end{bmatrix}p^{M-1} $$ with zeroes above the super-diagonal. Letting $A$ be the above matrix, then this proves $$p^M=A^Mp^0,$$ where $p^0$ is a vector whose first entry is $1$ and whose other entries are zero.
The limiting distribution $p$ will satisfy $p=Ap$. This means that $p_i=p_{i+1}+\frac16p_0$, so that $p$ is an arithmetic progression with difference $-\frac16p_0$. A little thought shows that this implies $$ p=\left(\frac{6}{21},\frac{5}{21},\frac{4}{21},\frac{3}{21},\frac{2}{21},\frac{1}{21}\right)^T. $$
Inspired by the answer from @MikeEarnest, I wonder if the following alternate proof is valid, for the limiting case? This proof has the advantage(?) of less algebra, and hopefully more intuition into why the distribution is 6:5:4:3:2:1.
Imagine you keep rolling forever. A number is reached if it is the sum at some point in time, otherwise it is skipped. Clearly in the limit, all numbers have the same probability $q$ of being reached. (This follows from ergodicity, right? In fact, ergodicity would suggest $q = {1 \over 3.5}$, but we don't need its exactly value for now.)
Now consider the interval of interest, $X_\tau \in [M, M+5]$:
$X_\tau = M+5$ iff $M-1$ is reached and the next roll is $6$. This happens with probability $q/6$.
$X_\tau = M+4$ iff (a) $M-1$ is reached and the next roll is $5$, or, (b) $M-2$ is reached and the next roll is $6$. So this happens with probability $2q/6$.
- Note that the case of reaching $M-2$, then rolling $1$ to reach $M-1$, then rolling $5$ to reach $M+4$, is included in (a) but not in (b), so we did not double-count.
Similarly, $X_\tau = M+3, M+2, M+1, M$ with probabilities $3q/6, 4q/6, 5q/6, 6q/6$ respectively.
Since these 6 possibilities are exhaustive, we have $$(1+2+3+4+5+6)q/6 = 1 \implies q = {6 \over 21} = {1 \over 3.5}$$ as I originally suspected; in particular, this implies that $$P(X_\tau = M + j) = (6-j)q/6 = (6-j)/21,$$ agreeing with Mike's answer.