Does the Enum#values() allocate memory on each call?

Yes.

Java doesn't have mechanism which lets us create unmodifiable array. So if values() would return same mutable array, we risk that someone could change its content for everyone.

So until unmodifiable arrays will be introduced to Java, for safety values() must return new/separate array holding all values.

We can test it with == operator:

MyEnumType[] arr1 = MyEnumType.values();
MyEnumType[] arr2 = MyEnumType.values();
System.out.println(arr1 == arr2);       //false

If you want to avoid recreating this array you can simply store it and reuse result of values() later. There are few ways to do it, like.

  • you can create private array and allow access to its content only via getter method like

    private static final MyEnumType[] VALUES = values();// to avoid recreating array
    
    MyEnumType getByOrdinal(int){
        return VALUES[int];
    }
    
  • you can store result of values() in unmodifiable collection like List to ensure that its content will not be changed (now such list can be public).

    public static final List<MyEnumType> VALUES = Collections.unmodifiableList(Arrays.asList(values()));
    

Theoretically, the values() method must return a new array every time, since Java doesn't have immutable arrays. If it always returned the same array it could not prevent callers muddling each other up by modifying the array.

I cannot locate the source code for it

The values() method has no ordinary source code, being compiler-generated. For javac, the code that generates the values() method is in com.sun.tools.javac.comp.Lower.visitEnumDef. For ECJ (Eclipse's compiler), the code is in org.eclipse.jdt.internal.compiler.codegen.CodeStream.generateSyntheticBodyForEnumValues.

An easier way to find the implementation of the values() method is by disassembling a compiled enum. First create some silly enum:

enum MyEnumType {
    A, B, C;

    public static void main(String[] args) {
        System.out.println(values()[0]);
    }
}

Then compile it, and disassemble it using the javap tool included in the JDK:

javac MyEnumType.java && javap -c -p MyEnumType

Visible in the output are all the compiler-generated implicit members of the enum, including (1) a static final field for each enum constant, (2) a hidden $VALUES array containing all the constants, (3) a static initializer block that instantiates each constant and assigns each one to its named field and to the array, and (4) the values() method that works by calling .clone() on the $VALUES array and returning the result:

final class MyEnumType extends java.lang.Enum<MyEnumType> {
  public static final MyEnumType A;

  public static final MyEnumType B;

  public static final MyEnumType C;

  private static final MyEnumType[] $VALUES;

  public static MyEnumType[] values();
    Code:
       0: getstatic     #1                  // Field $VALUES:[LMyEnumType;
       3: invokevirtual #2                  // Method "[LMyEnumType;".clone:()Ljava/lang/Object;
       6: checkcast     #3                  // class "[LMyEnumType;"
       9: areturn

  public static MyEnumType valueOf(java.lang.String);
    Code:
       0: ldc           #4                  // class MyEnumType
       2: aload_0
       3: invokestatic  #5                  // Method java/lang/Enum.valueOf:(Ljava/lang/Class;Ljava/lang/String;)Ljava/lang/Enum;
       6: checkcast     #4                  // class MyEnumType
       9: areturn

  private MyEnumType(java.lang.String, int);
    Code:
       0: aload_0
       1: aload_1
       2: iload_2
       3: invokespecial #6                  // Method java/lang/Enum."<init>":(Ljava/lang/String;I)V
       6: return

  public static void main(java.lang.String[]);
    Code:
       0: getstatic     #7                  // Field java/lang/System.out:Ljava/io/PrintStream;
       3: invokestatic  #8                  // Method values:()[LMyEnumType;
       6: iconst_0
       7: aaload
       8: invokevirtual #9                  // Method java/io/PrintStream.println:(Ljava/lang/Object;)V
      11: return

  static {};
    Code:
       0: new           #4                  // class MyEnumType
       3: dup
       4: ldc           #10                 // String A
       6: iconst_0
       7: invokespecial #11                 // Method "<init>":(Ljava/lang/String;I)V
      10: putstatic     #12                 // Field A:LMyEnumType;
      13: new           #4                  // class MyEnumType
      16: dup
      17: ldc           #13                 // String B
      19: iconst_1
      20: invokespecial #11                 // Method "<init>":(Ljava/lang/String;I)V
      23: putstatic     #14                 // Field B:LMyEnumType;
      26: new           #4                  // class MyEnumType
      29: dup
      30: ldc           #15                 // String C
      32: iconst_2
      33: invokespecial #11                 // Method "<init>":(Ljava/lang/String;I)V
      36: putstatic     #16                 // Field C:LMyEnumType;
      39: iconst_3
      40: anewarray     #4                  // class MyEnumType
      43: dup
      44: iconst_0
      45: getstatic     #12                 // Field A:LMyEnumType;
      48: aastore
      49: dup
      50: iconst_1
      51: getstatic     #14                 // Field B:LMyEnumType;
      54: aastore
      55: dup
      56: iconst_2
      57: getstatic     #16                 // Field C:LMyEnumType;
      60: aastore
      61: putstatic     #1                  // Field $VALUES:[LMyEnumType;
      64: return
}

However, the fact that the values() method has to return a new array, doesn't mean the compiler has to use the method. Potentially a compiler could detect use of MyEnumType.values()[ordinal] and, seeing that the array is not modified, it could bypass the method and use the underlying $VALUES array. The above disassembly of the main method shows that javac does not make such an optimization.

I also tested ECJ. The disassembly shows ECJ also initializes a hidden array to store the constants (although the Java langspec doesn't require that), but interestingly its values() method prefers to create a blank array then fill it with System.arraycopy, rather than calling .clone(). Either way, values() returns a new array every time. Like javac, it doesn't attempt to optimize the ordinal lookup:

final class MyEnumType extends java.lang.Enum<MyEnumType> {
  public static final MyEnumType A;

  public static final MyEnumType B;

  public static final MyEnumType C;

  private static final MyEnumType[] ENUM$VALUES;

  static {};
    Code:
       0: new           #1                  // class MyEnumType
       3: dup
       4: ldc           #14                 // String A
       6: iconst_0
       7: invokespecial #15                 // Method "<init>":(Ljava/lang/String;I)V
      10: putstatic     #19                 // Field A:LMyEnumType;
      13: new           #1                  // class MyEnumType
      16: dup
      17: ldc           #21                 // String B
      19: iconst_1
      20: invokespecial #15                 // Method "<init>":(Ljava/lang/String;I)V
      23: putstatic     #22                 // Field B:LMyEnumType;
      26: new           #1                  // class MyEnumType
      29: dup
      30: ldc           #24                 // String C
      32: iconst_2
      33: invokespecial #15                 // Method "<init>":(Ljava/lang/String;I)V
      36: putstatic     #25                 // Field C:LMyEnumType;
      39: iconst_3
      40: anewarray     #1                  // class MyEnumType
      43: dup
      44: iconst_0
      45: getstatic     #19                 // Field A:LMyEnumType;
      48: aastore
      49: dup
      50: iconst_1
      51: getstatic     #22                 // Field B:LMyEnumType;
      54: aastore
      55: dup
      56: iconst_2
      57: getstatic     #25                 // Field C:LMyEnumType;
      60: aastore
      61: putstatic     #27                 // Field ENUM$VALUES:[LMyEnumType;
      64: return

  private MyEnumType(java.lang.String, int);
    Code:
       0: aload_0
       1: aload_1
       2: iload_2
       3: invokespecial #31                 // Method java/lang/Enum."<init>":(Ljava/lang/String;I)V
       6: return

  public static void main(java.lang.String[]);
    Code:
       0: getstatic     #35                 // Field java/lang/System.out:Ljava/io/PrintStream;
       3: invokestatic  #41                 // Method values:()[LMyEnumType;
       6: iconst_0
       7: aaload
       8: invokevirtual #45                 // Method java/io/PrintStream.println:(Ljava/lang/Object;)V
      11: return

  public static MyEnumType[] values();
    Code:
       0: getstatic     #27                 // Field ENUM$VALUES:[LMyEnumType;
       3: dup
       4: astore_0
       5: iconst_0
       6: aload_0
       7: arraylength
       8: dup
       9: istore_1
      10: anewarray     #1                  // class MyEnumType
      13: dup
      14: astore_2
      15: iconst_0
      16: iload_1
      17: invokestatic  #53                 // Method java/lang/System.arraycopy:(Ljava/lang/Object;ILjava/lang/Object;II)V
      20: aload_2
      21: areturn

  public static MyEnumType valueOf(java.lang.String);
    Code:
       0: ldc           #1                  // class MyEnumType
       2: aload_0
       3: invokestatic  #59                 // Method java/lang/Enum.valueOf:(Ljava/lang/Class;Ljava/lang/String;)Ljava/lang/Enum;
       6: checkcast     #1                  // class MyEnumType
       9: areturn
}

However, it's still potentially possible that the JVM could have an optimization that detects the fact that the array is copied and then thrown away, and avoids it. To test that, I ran the following pair of benchmark programs that test ordinal lookup in a loop, one which calls values() each time and the other that uses a private copy of the array. The result of the ordinal lookup is assigned to a volatile field to prevent it being optimized away:

enum MyEnumType1 {
    A, B, C;

    public static void main(String[] args) {
        long t = System.nanoTime();
        for (int n = 0; n < 100_000_000; n++) {
            for (int i = 0; i < 3; i++) {
                dummy = values()[i];
            }
        }
        System.out.printf("Done in %.2f seconds.\n", (System.nanoTime() - t) / 1e9);
    }

    public static volatile Object dummy;
}

enum MyEnumType2 {
    A, B, C;

    public static void main(String[] args) {
        long t = System.nanoTime();
        for (int n = 0; n < 100_000_000; n++) {
            for (int i = 0; i < 3; i++) {
                dummy = values[i];
            }
        }
        System.out.printf("Done in %.2f seconds.\n", (System.nanoTime() - t) / 1e9);
    }

    public static volatile Object dummy;
    private static final MyEnumType2[] values = values();
}

I ran this on Java 8u60, on the Server VM. Each test using the values() method took around 10 seconds, while each test using the private array took around 2 seconds. Using the -verbose:gc JVM argument showed there was significant garbage collection activity when the values() method was used, and none when using the private array. Running the same tests on the Client VM, the private array was still fast, but the values() method became even slower, taking over a minute to finish. Calling values() also took longer the more enum constants were defined. All this indicates that the values() method really does allocate a new array each time, and that avoiding it can be advantageous.

Note that both java.util.EnumSet and java.util.EnumMap need to use the array of enum constants. For performance they call JRE proprietary code that caches the result of values() in a shared array stored in java.lang.Class. You can get access to that shared array yourself by calling sun.misc.SharedSecrets.getJavaLangAccess().getEnumConstantsShared(MyEnumType.class), but it is unsafe to depend on it as such APIs are not part of any spec and can be changed or removed in any Java update.

Conclusion:

  • The enum values() method has to behave as if it always allocates a new array, in case callers modify it.
  • Compilers or VMs could potentially optimize that allocation away in some cases, but apparently they don't.
  • In performance-critical code, it is well worth taking your own copy of the array.