Downsample a 1D numpy array
In the simple case where your array's size is divisible by the downsampling factor (R
), you can reshape
your array, and take the mean along the new axis:
import numpy as np
a = np.array([1.,2,6,2,1,7])
R = 3
a.reshape(-1, R)
=> array([[ 1., 2., 6.],
[ 2., 1., 7.]])
a.reshape(-1, R).mean(axis=1)
=> array([ 3. , 3.33333333])
In the general case, you can pad your array with NaN
s to a size divisible by R
, and take the mean using scipy.nanmean
.
import math, scipy
b = np.append(a, [ 4 ])
b.shape
=> (7,)
pad_size = math.ceil(float(b.size)/R)*R - b.size
b_padded = np.append(b, np.zeros(pad_size)*np.NaN)
b_padded.shape
=> (9,)
scipy.nanmean(b_padded.reshape(-1,R), axis=1)
=> array([ 3. , 3.33333333, 4.])
Here are a few approaches using either linear interpolation or the Fourier method. These methods support upsampling as well as downsampling.
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import resample
from scipy.interpolate import interp1d
def ResampleLinear1D(original, targetLen):
original = np.array(original, dtype=np.float)
index_arr = np.linspace(0, len(original)-1, num=targetLen, dtype=np.float)
index_floor = np.array(index_arr, dtype=np.int) #Round down
index_ceil = index_floor + 1
index_rem = index_arr - index_floor #Remain
val1 = original[index_floor]
val2 = original[index_ceil % len(original)]
interp = val1 * (1.0-index_rem) + val2 * index_rem
assert(len(interp) == targetLen)
return interp
if __name__=="__main__":
original = np.sin(np.arange(256)/10.0)
targetLen = 100
# Method 1: Use scipy interp1d (linear interpolation)
# This is the simplest conceptually as it just uses linear interpolation. Scipy
# also offers a range of other interpolation methods.
f = interp1d(np.arange(256), original, 'linear')
plt.plot(np.apply_along_axis(f, 0, np.linspace(0, 255, num=targetLen)))
# Method 2: Use numpy to do linear interpolation
# If you don't have scipy, you can do it in numpy with the above function
plt.plot(ResampleLinear1D(original, targetLen))
# Method 3: Use scipy's resample
# Converts the signal to frequency space (Fourier method), then back. This
# works efficiently on periodic functions but poorly on non-periodic functions.
plt.plot(resample(original, targetLen))
plt.show()