dplyr rowwise by some columns
In data.table, you can do
library(data.table)
setDT(x)
x[, grep("^V",names(DT)) := .SD/Reduce(`+`, .SD), .SDcols = V1:V5]
A V1 V2 V3 V4 V5
1: A 0.28571429 0.0000000 0.2857143 0.07142857 0.35714286
2: B 0.23076923 0.2307692 0.3076923 0.15384615 0.07692308
3: C 0.44444444 0.0000000 0.4444444 0.00000000 0.11111111
4: D 0.07142857 0.3571429 0.1428571 0.07142857 0.35714286
5: E 0.00000000 0.2222222 0.3333333 0.44444444 0.00000000
To compute the denominator with NA values ignored, I guess rowSums
is an option, though it will coerce .SD
to a matrix as an intermediate step.
You can combine tidyr's spread
and gather
with dplyr to get the following single pipeline:
x <- data.frame(A=LETTERS[1:5], as.data.frame(matrix(sample(0:5, 25, T), ncol=5)))
y <- x %>%
gather(V, val, -A) %>%
group_by(A) %>%
mutate(perc = val / sum(val)) %>%
select(-val) %>%
spread(V, perc)
With tidy data it's quite easy to get any group-wise sum (rows, columns or any nested index-level) and compute percentages. The spread
and gather
will get you to and from your input data format.