Dropping multiple columns from Spark dataframe by Iterating through the columns from a Scala List of Column names
If you just want to do nothing more complex than dropping several named columns, as opposed to selecting them by a particular condition, you can simply do the following:
df.drop("colA", "colB", "colC")
Answer:
val colsToRemove = Seq("colA", "colB", "colC", etc)
val filteredDF = df.select(df.columns .filter(colName => !colsToRemove.contains(colName)) .map(colName => new Column(colName)): _*)
This should work fine :
val dropList : List[String] |
val df : DataFrame |
val test_df = df.drop(dropList : _*)