Easiest way to solve this system of equations
Notice that the numerators of the two fractions are equal. It might thus be helpful to consider $\frac{1}{x}$ and $\frac{1}{y}$. With this approach, we observe that $$\frac{1}{x} + \frac{1}{y} = \frac{1}{a} + \frac{1}{b}$$
Direct elimination doesn't look so hectic in this case:
$$(b+ka)x=ab(1+k) \iff ka(x-b)=b(a-x)\iff k = - \frac{b(x-a)}{a(x-b)}$$
Doing the same for the second equation then equating eliminates $\,k\,$.
Alternatively, note that $$\frac xy=\frac{a+kb}{b+ka}\implies (bx-ay)=k(by-ax)\implies k=\frac{bx-ay}{by-ax}$$ and equate with @dxiv's answer.