Efficient way to drop rows with overlapping times

Here is a data.table solution using foverlaps to detect the overlapping records (as already mentioned by @GenesRus). The overlapping records are assigned to groups to filter the record with max. priority in the group. I added two more records to your example data, to show that this procedure is also working for three or more overlapping records:

Edit: I modified and translated @pgcudahy's solution to data.table which gives even faster code:

library(data.table)
library(lubridate)

times_df <- data.frame(
  start = as_datetime(
    c(
      "2019-10-05 14:05:25",
      "2019-10-05 17:30:20",
      "2019-10-05 17:37:00",
      "2019-10-06 04:43:55",
      "2019-10-06 04:53:45",
      "2019-10-06 04:53:46",
      "2019-10-06 04:53:47"
    )
  ),
  stop = as_datetime(
    c(
      "2019-10-05 14:19:20",
      "2019-10-05 17:45:15",
      "2019-10-05 17:50:45",
      "2019-10-06 04:59:00",
      "2019-10-06 05:07:10",
      "2019-10-06 05:07:11",
      "2019-10-06 05:07:12"
    )
  ),
  priority = c(5, 3, 4, 3, 4, 5, 6)
)

resultDT <- setDT(times_df, key="start")[!(stop >= shift(start, type="lead", fill = TRUE) & priority > shift(priority, type="lead", fill = TRUE)) &
                                         !(start <= shift(stop, type="lag", fill = FALSE) & priority > shift(priority, type="lag", fill = TRUE))]

# old approach ------------------------------------------------------------
# times_dt <- as.data.table(times_df)
# setkey(times_dt, start, stop)[, index := .I]
# overlaps_dt <- foverlaps(times_dt, times_dt, type = "any", which = TRUE)[xid != yid][, group := fifelse(xid > yid, yes = paste0(yid, "_", xid), no = paste0(xid, "_", yid))]
# overlaps_merged <- merge(times_dt, overlaps_dt, by.x = "index", by.y = "xid")[, .(delete_index = index[priority == max(priority)]), by = "group"]
# result_dt <- times_dt[!unique(overlaps_merged$delete_index)][, index := NULL]

For further details please see ?foverlaps - There are some more useful features implemented to control what is considered a overlap such as maxgap, minoverlap or type (any, within, start, end and equal).


Update - new benchmark

Unit: microseconds
          expr       min         lq      mean    median        uq        max neval
          Paul 25572.550 26105.2710 30183.930 26514.342 29614.272 153810.600   100
           MKa  5100.447  5276.8350  6508.333  5401.275  5832.270  23137.879   100
      pgcudahy  3330.243  3474.4345  4284.640  3556.802  3748.203  21241.260   100
 ismirsehregal   711.084   913.3475  1144.829  1013.096  1433.427   2316.159   100

Benchmark code:

#### library ----

library(dplyr)
library(lubridate)
library(igraph)
library(data.table)
library(microbenchmark)

#### data ----

times_df <- data.frame(
  start = as_datetime(
    c(
      "2019-10-05 14:05:25",
      "2019-10-05 17:30:20",
      "2019-10-05 17:37:00",
      "2019-10-06 04:43:55",
      "2019-10-06 04:53:45",
      "2019-10-06 04:53:46",
      "2019-10-06 04:53:47"
    )
  ),
  stop = as_datetime(
    c(
      "2019-10-05 14:19:20",
      "2019-10-05 17:45:15",
      "2019-10-05 17:50:45",
      "2019-10-06 04:59:00",
      "2019-10-06 05:07:10",
      "2019-10-06 05:07:11",
      "2019-10-06 05:07:12"
    )
  ),
  priority = c(5, 3, 4, 3, 4, 5, 6)
)

times_tib <- as_tibble(times_df)
times_dt <- as.data.table(times_df)

#### group_interval function ----

# buffer to take a form similar to: days(1), weeks(2), etc.
group_interval <- function(start, end, buffer = 0) {

  dat <- tibble(rid = 1:length(start),
                start = start,
                end = end,
                intervals = case_when(!is.na(start) & !is.na(end) ~ interval(start, end),
                                      is.na(start) ~ interval(end, end),
                                      is.na(end) ~ interval(start, start),
                                      TRUE ~ interval(NA, NA)))

  # apply buffer period to intervals
  int_start(dat$intervals) <- int_start(dat$intervals) - buffer + seconds(0.01)
  int_end(dat$intervals) <- int_end(dat$intervals) + buffer - seconds(0.01)

  df_overlap <- bind_cols(
    expand.grid(dat$rid, dat$rid), # make a 2 col table with every combination of id numbers
    expand.grid(dat$intervals, dat$intervals)) %>% # make a combination of every interval
    mutate(overlap = int_overlaps(.data$Var11, .data$Var21)) %>% # determine if intervals overlap
    rename("row" = "Var1", "col" = "Var2")

  # Find groups via graph theory See igraph package
  dat_graph <- graph_from_data_frame(filter(df_overlap, overlap) %>% select(row, col))
  groups <- components(dat_graph)$membership[df_overlap$row]

  # create a 2 column df with row (index) and group number, arrange on row number and return distinct values
  df_groups <- tibble(row = as.integer(names(groups)), group = groups) %>%
    unique()

  # returns
  left_join(select(dat, rid), df_groups, by = c("rid" = "row"))$group

}

#### benchmark ----

library(igraph)
library(data.table)
library(dplyr)
library(lubridate)
library(microbenchmark)

df_Paul <- df_MKa <- df_pgcudahy <- df_ismirsehregal <- times_df <- data.frame(
  start = as_datetime(
    c(
      "2019-10-05 14:05:25",
      "2019-10-05 17:30:20",
      "2019-10-05 17:37:00",
      "2019-10-06 04:43:55",
      "2019-10-06 04:53:45",
      "2019-10-06 04:53:46",
      "2019-10-07 06:00:00",
      "2019-10-07 06:10:00",
      "2019-10-07 06:20:00",
      "2019-10-08 06:00:00",
      "2019-10-08 06:10:00",
      "2019-10-08 06:20:00",
      "2019-10-09 03:00:00",
      "2019-10-09 03:10:00",
      "2019-10-10 03:00:00",
      "2019-10-10 03:10:00",
      "2019-10-11 05:00:00",
      "2019-10-11 05:00:00")
  ),
  stop = as_datetime(
    c(
      "2019-10-05 14:19:20",
      "2019-10-05 17:45:15",
      "2019-10-05 17:50:45",
      "2019-10-06 04:59:00",
      "2019-10-06 05:07:10",
      "2019-10-06 05:07:11",
      "2019-10-07 06:18:00",
      "2019-10-07 06:28:00",
      "2019-10-07 06:38:00",
      "2019-10-08 06:18:00",
      "2019-10-08 06:28:00",
      "2019-10-08 06:38:00",
      "2019-10-09 03:30:00",
      "2019-10-09 03:20:00",
      "2019-10-10 03:30:00",
      "2019-10-10 03:20:00",
      "2019-10-11 05:40:00",
      "2019-10-11 05:40:00")
  ),
  priority = c(5, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4, 3, 1, 2, 2, 1, 3, 4)
)


benchmarks <- microbenchmark(Paul = {
  group_interval <- function(start, end, buffer = 0) {

    dat <- tibble(rid = 1:length(start),
                  start = start,
                  end = end,
                  intervals = case_when(!is.na(start) & !is.na(end) ~ interval(start, end),
                                        is.na(start) ~ interval(end, end),
                                        is.na(end) ~ interval(start, start),
                                        TRUE ~ interval(NA, NA)))

    int_start(dat$intervals) <- int_start(dat$intervals) - buffer + seconds(0.01)
    int_end(dat$intervals) <- int_end(dat$intervals) + buffer - seconds(0.01)

    df_overlap <- bind_cols(
      expand.grid(dat$rid, dat$rid), # make a 2 col table with every combination of id numbers
      expand.grid(dat$intervals, dat$intervals)) %>% # make a combination of every interval
      mutate(overlap = int_overlaps(.data$Var11, .data$Var21)) %>% # determine if intervals overlap
      rename("row" = "Var1", "col" = "Var2")

    dat_graph <- graph_from_data_frame(filter(df_overlap, overlap) %>% select(row, col))
    groups <- components(dat_graph)$membership[df_overlap$row]

    df_groups <- tibble(row = as.integer(names(groups)), group = groups) %>%
      unique()

    left_join(select(dat, rid), df_groups, by = c("rid" = "row"))$group
  }

  times_tib <- as_tibble(df_Paul)

  mutate(times_tib, group = group_interval(start, stop)) %>%
    group_by(group) %>%
    top_n(1, desc(priority)) %>%
    ungroup() %>%
    select(-group)
},
MKa = {
  df_MKa$id <- 1:nrow(df_MKa)

  # Create consolidated df which we will use to check if stop date is in between start and stop
  my_df <- bind_rows(replicate(n = nrow(df_MKa), expr = df_MKa, simplify = FALSE))
  my_df$stop_chk <- rep(df_MKa$stop, each = nrow(df_MKa))

  # Flag if stop date sits in between start and stop
  my_df$chk <- my_df$stop_chk >= my_df$start & my_df$stop_chk <= my_df$stop
  my_df$chk_id <- df_MKa[match(my_df$stop_chk, df_MKa$stop), "id"]

  # Using igrpah to cluster ids to create unique groups
  # this will identify any overlapping groups
  library(igraph)
  g <- graph.data.frame(my_df[my_df$chk == TRUE, c("id", "chk_id")])
  df_g <- data.frame(clusters(g)$membership)
  df_g$chk_id <- row.names(df_g)

  # copy the unique groups to the df
  my_df$new_id <- df_g[match(my_df$chk_id, df_g$chk_id), "clusters.g..membership"]
  my_df %>% 
    filter(chk == TRUE) %>%
    arrange(priority) %>%
    filter(!duplicated(new_id)) %>%
    select(start, stop, priority) %>%
    arrange(start)
}, pgcudahy = {
  df_pgcudahy %>%
    arrange(start) %>%
    mutate(remove1 = ifelse((stop >= lead(start, default=FALSE)) & 
                              (priority > lead(priority, default=(max(priority) + 1))), TRUE, FALSE)) %>%
    mutate(remove2 = ifelse((start <= lag(stop, default=FALSE)) & 
                              (priority > lag(priority, default=(max(priority) + 1))), TRUE, FALSE)) %>%
    filter(remove1 == FALSE & remove2 == FALSE) %>%
    select(1:3)
}, ismirsehregal = {
  setDT(df_ismirsehregal, key="start")[!(stop >= shift(start, type="lead", fill = TRUE) & priority > shift(priority, type="lead", fill = TRUE)) &
                                       !(start <= shift(stop, type="lag", fill = FALSE) & priority > shift(priority, type="lag", fill = TRUE))]
})

benchmarks

Tags:

R

Dplyr