equation alignment in a two-column table
Use aligned
and a nested aligned
:
\documentclass{article}
\usepackage{amsmath}
\usepackage{newtxtext,newtxmath} % NOT times
\begin{document}
\begin{equation*}
\begin{aligned}
& \text{Addition} && (a+bi)+(c+di)=(a+c)+(b+d)i \\
& \text{Subtraction} && (a+bi)-(c+di)=(a-c)+(b-d)i \\
& \text{Multiplication} &&
\begin{aligned}[t]
z\cdot w &= r(\cos\theta+i\sin\theta)\cdot k(\cos\psi+i\sin\psi) \\
&= rk\cos(\theta+\psi)+i\sin(\theta+\psi)
\end{aligned} \\
& \text{Division} &&
\begin{aligned}[t]
\frac{z}{w} &= \frac{r(\cos\theta+i\sin\theta)}{k(\cos\psi+i\sin\psi)} \\
&= \frac {r}{k}[\cos(\theta-\psi)+i\sin(\theta-\psi)]
\end{aligned}
\end{aligned}
\end{equation*}
\end{document}
Some notable points:
times
is obsolete, better usingnewtxtext
andnewtxmath
;- none of your
\left
and\right
is useful, rather they're all harmful to spacing; - I changed the * into a middle dot;
- I added the missing line for the multiplication;
- Lowering “Multiplication” and “Division” to the middle of the two lines would make the text ambiguous (experiment the difference when you remove the two
[t]
positional arguments).
You can use a \phantom
to align the second row for your Division
title:
\documentclass{article}
\begin{document}
\noindent
\begin{tabular}{ @{} l l }
Addition & $(a + bi) + (c + di) = (a + c) + (b + d)i$ \\[\jot]
Subtraction & $(a + bi) - (c + di) = (a - c) + (b - d)i$ \\[\jot]
Multiplication & $z \times w = r (\cos \theta + i \sin \theta ) \times k (\cos \psi + i \sin \psi )$ \\[\jot]
Division & $\frac{z}{w} = \frac{r (\cos \theta + i \sin \theta)}{k (\cos \psi + i \sin \psi)}$ \\
& $\phantom{\frac{z}{w}} = \frac{r}{k} [\cos (\theta - \psi) + i \sin (\theta - \psi)]$
\end{tabular}
\end{document}
with array
and aligned
:
\documentclass{article}
\usepackage{amsmath}
\usepackage{newtxtext,newtxmath} % NOT times
\begin{document}
\[\renewcommand\arraystretch{1.5}
\begin{array}{ll}
\text{Addition} & (a+bi)+(c+di)=(a+c)+(b+d)i \\
\text{Subtraction} & (a+bi)-(c+di)=(a-c)+(b-d)i \\
\text{Multiplication} & z\cdot w = r(\cos\theta+i\sin\theta)\cdot k(\cos\psi+i\sin\psi) \\
\text{Division} & \begin{aligned}[t]
\frac{z}{w} &= \frac{r(\cos\theta+i\sin\theta)}{k(\cos\psi+i\sin\psi)} \\
&= \frac {r}{k}\bigl[\cos(\theta-\psi)+i\sin(\theta-\psi)\bigr]
\end{aligned}
\end{array}
\]
\end{document}