Evaluate $\int_0^\infty\frac{\ln x}{1+x^2}dx$
Hint
Write $$\int_0^\infty\frac{\ln x}{(1+x^2)}dx=\int_0^1\frac{\ln x}{(1+x^2)}dx+\int_1^\infty\frac{\ln x}{(1+x^2)}dx$$ For the second integral make a change of variable $x=\frac{1}{y}$ and see the beauty of the result.
I am sure that you can take from here.
In general $$ \mathcal{I}(\alpha)=\int_0^\infty\frac{\ln x}{x^2+\alpha^2}\ dx $$ can be evaluated by using substitution $u=\dfrac{\alpha^2}{x}\;\Rightarrow\;x=\dfrac{\alpha^2}{u}\;\Rightarrow\;dx=-\dfrac{\alpha^2}{u^2}\ du$, then \begin{align} \mathcal{I}(\alpha)&=\int_0^\infty\frac{\ln \left(\dfrac{\alpha^2}{u}\right)}{\left(\dfrac{\alpha^2}{u}\right)^2+\alpha^2}\cdot \dfrac{\alpha^2}{u^2}\ du\\ &=\int_0^\infty\frac{2\ln \alpha-\ln u}{\alpha^2+u^2}\ du\\ &=2\ln \alpha\int_0^\infty\frac{1}{\alpha^2+u^2}\ du-\int_0^\infty\frac{\ln u}{u^2+\alpha^2}\ du\\ &=2\ln \alpha\int_0^\infty\frac{1}{\alpha^2+u^2}\ du-\mathcal{I}(\alpha)\\ \mathcal{I}(\alpha)&=\ln \alpha\int_0^\infty\frac{1}{\alpha^2+u^2}\ du. \end{align} The last integral can easily be evaluated since it is a common integral. Using substitution $u=\tan\theta$, the integral turns out to be \begin{align} \mathcal{I}(\alpha)&=\frac{\ln \alpha}{\alpha}\int_0^{\Large\frac\pi2} \ d\theta\\ &=\large\color{blue}{\frac{\pi\ln \alpha}{2\alpha}}. \end{align} Thus $$ \mathcal{I}(1)=\int_0^\infty\frac{\ln x}{x^2+1}\ dx=\large\color{blue}{0}. $$
Here is one appraoch!!
changing $x = \tan \theta$ $$\int_{0}^{\pi/2} \frac{\log(\tan\theta)}{\sec^2 \theta} \sec^2 \theta d\theta = \int_0^{\pi/2} \log (\sin \theta) d\theta - \int_{0}^{\pi/2} \log (\cos \theta) d\theta $$
By changing $\theta \to \pi/2 - \theta$ on the latter integrand, we get $$\int_0^{\pi/2} \log (\sin \theta) d\theta - \int_{0}^{\pi/2} \log (\cos (\pi/2-\theta)) d\theta = \int_0^{\pi/2} \log (\sin \theta) d\theta - \int_{0}^{\pi/2} \log (\sin \theta) d\theta = 0$$