Evaluate $\sum_{k=1}^nk\cdot k!$

HINT: $k(k!)=(k+1-1)(k!)=(k+1)!-k!$. Now do the summation and most of the terms will cancel.


$$\sum_{k=1}^n k\cdot k!=\sum_{k=1}^n (k+1-1)k!=\sum_{k=1}^n \left((k+1) k!- k!\right)=$$ $$=\sum_{k=1}^n ((k+1)!-k!)=\sum_{k=1}^n (k+1)!-\sum_{k=1}^n k!=$$ $$=\sum_{k=1}^{n-1} (k+1)!+(n+1)!-\sum_{k=0}^{n-1} (k+1)!=$$ $$=\sum_{k=1}^{n-1} (k+1)!+(n+1)!-(0+1)!-\sum_{k=1}^{n-1} (k+1)!=$$ $$=(n+1)!-1$$


By telescoping $$\sum_{k=1}^n k\times k!=\sum_{k=1}^n \left((k+1)\times k!- k!\right)=\sum_{k=1}^n ((k+1)!-k!)=(n+1)!-1$$