Evaluating $\int_0^{\frac\pi2}\frac{\ln{(\sin x)}\ \ln{(\cos x})}{\tan x}\ dx$

Let's start out with the substitution $ \displaystyle \ln(\sin x) = u $ and get: $$\ln(\cos x)=\frac{\ln(1-e^{2u})}{2}$$ $$\displaystyle\frac{1}{\tan x} \ dx =du$$ that further yields $$\int_0^{\pi/2}\frac{(\ln{\sin x})(\ln{\cos x})}{\tan x}dx= \frac{1}{2} \int_{-\infty}^{0} \ln(1-e^{2u}) u \ du$$

According to Taylor expansion we have $$\ln(1-e^{2u})= \sum_{k=1}^{\infty} (-1)^{2k+1} \frac{e^{2 k u}}{k}$$ then $$\frac{1}{2} \int_{-\infty}^{0} \ln(1-e^{2u}) u \ du=$$ $$\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{2k+1}}{k} \int_{-\infty}^{0} u e^{2ku} \ du =$$ $$\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{2k+1}}{k} \frac{-1}{4k^2} = \frac{1}{8} \sum_{k=1}^{\infty} \frac{1}{k^3}=\frac{1}{8} \zeta(3).$$

Remark: the value of $\zeta(3)\approx1.2020569$ is called Apéry's Constant - see here.

Q.E.D. (Chris)


Let $u = \sin^2(x)$. Then $\frac{\mathrm{d}x}{\tan(x)} = \frac{\cos(x)}{\sin(x)} \mathrm{d}x = \frac{d\sin(x)}{\sin(x)} = \frac{1}{2}\frac{\mathrm{d}u}{u}$, $\ln(\sin(x)) = \frac{1}{2}\ln(u)$ and $\ln(\cos(x)) = \frac{1}{2} \ln(1-u)$: $$ \int_0^{\pi/2} \frac{\ln(\sin(x)) \ln(\cos(x))}{\tan(x)} \mathrm{d} x = \frac{1}{8} \int_0^{1} \frac{\ln u}{u} \cdot \ln(1-u) \mathrm{d} u = \left.\frac{1}{8} \frac{\mathrm{d}^2}{\mathrm{d} s \mathrm{d} t} \int_0^1 u^{s-1} (1-u)^{t-1} \mathrm{d}u \right|_{s\to 0^+,t=1} = \left.\frac{1}{8} \frac{\mathrm{d}^2}{\mathrm{d} s \mathrm{d} t} \frac{\Gamma(s) \Gamma(t)}{\Gamma(s+t)} \right|_{s\to 0^+,t=1} $$ First differentiate with respect to $t$ and substitute $t=1$: $$ \left.\frac{1}{8} \frac{\mathrm{d}}{\mathrm{d} s} \frac{\Gamma(s)}{\Gamma(s+1)}\left( \psi(1) - \psi(s+1)\right) \right|_{s\to 0^+} = \left.\frac{1}{8} \frac{\mathrm{d}}{\mathrm{d} s} \frac{\left( \psi(1) - \psi(s+1)\right) }{s} \right|_{s\to 0^+} $$ Using Taylor series expansion for the digamma function $\psi(s)$ we have: $$ \frac{\left( \psi(1) - \psi(s+1)\right) }{s} = -\zeta(2) + \zeta(3) s + \mathcal{o}(s) $$ Hence the value of the integral is: $$ \int_0^{\pi/2} \frac{\ln(\sin(x)) \ln(\cos(x))}{\tan(x)} \mathrm{d} x = \frac{1}{8} \zeta(3) $$


Alternatively you could use $$\frac{\ln(1-u)}{u} = -\sum_{k=0}^\infty \frac{u^k}{k+1}$$ and integrate term-wise: $$\int_0^1 u^k \ln(u) \mathrm{d} u \stackrel{u=\exp(-t)}{=} \int_0^\infty t \exp(-t(k+1)) \mathrm{d} t = -\frac{1}{(k+1)^2}$$ which yields the result immediately.


Rewrite the integral as $$ \int_0^{\Large\frac\pi2}\frac{\ln{(\sin x)}\ \ln{(\cos x})}{\tan x}\ dx=\int_0^{\Large\frac\pi2}\frac{\ln{(\sin x)}\ \ln{\sqrt{1-\sin^2 x}}}{\sin x}\cdot\cos x\ dx. $$ Set $t=\sin x\ \color{red}{\Rightarrow}\ dt=\cos x\ dx$, then we obtain \begin{align} \int_0^{\Large\frac\pi2}\frac{\ln{(\sin x)}\ \ln{(\cos x})}{\tan x}\ dx&=\frac12\int_0^1\frac{\ln t\ \ln(1-t^2)}{t}\ dt\\ &=-\frac12\int_0^1\ln t\sum_{n=1}^\infty\frac{t^{2n}}{nt}\ dt\tag1\\ &=-\frac12\sum_{n=1}^\infty\frac{1}{n}\int_0^1t^{2n-1}\ln t\ dt\\ &=\frac12\sum_{n=1}^\infty\frac{1}{n}\cdot\frac{1}{(2n)^2}\tag2\\ &=\large\color{blue}{\frac{\zeta(3)}{8}}. \end{align}


Notes :

$[1]\ \ $Use Maclaurin series for natural logarithm: $\displaystyle\ln(1-x)=-\sum_{n=1}^\infty\frac{x^n}{n}\ $ for $|x|<1$.

$[2]\ \ $$\displaystyle\int_0^1 x^\alpha \ln^n x\ dx=\frac{(-1)^n n!}{(\alpha+1)^{n+1}}\ $ for $ n=0,1,2,\cdots$