Existence of a non-constant entire function
a. $e^{iz}$ satisfies $|e^{iz}|=e^{-\text{Im}(y)}<1$
b. $iz$ as Tim Raczkowski
told you.
c. $e^{z}$ is bounded on the imaginary axis. If $iz\in\mathbb{R}$ then $|e^{z}|=1$.
Part b) is incorrect. $f(z)=iz$ takes on real values on the imaginary axis.