Expected number of card draws to get all 4 suits
Let $s=13$ denote the number of cards in each suit and $N$ denote the (random) number of cards drawn when all $k=4$ suits are represented for the first time. Hence, $k\leqslant N\leqslant(k-1)s+1$ with full probability.
For each $n\geqslant1$, the event $[N\gt n]$ depends on the $n$ first cards drawn only. There are ${ks\choose n}$ collections of $n$ cards from a full deck of $ks$ cards and each such collection has the same probability ${ks\choose n}^{-1}$ to be drawn. The event $[N\gt n]$ means that one avoids at least one suit. Using inclusion-exclusion principle, there are $A_n$ ways to do so, where $$ A_n={k\choose1}{(k-1)s\choose n}-{k\choose2}{(k-2)s\choose n}+\cdots\pm{k\choose k-1}{s\choose n}\mp{k\choose 0}{0\choose n}. $$ This yields the expectation $$ \mathbb E(N)=\sum_{n\geqslant0}\mathbb P(N\gt n)=\sum_{n\geqslant0}{ks\choose n}^{-1}A_n. $$ In the case at hand, $$ \mathbb E(N)=\sum_{n\geqslant0}{52\choose n}^{-1}\left(4{39\choose n}-6{26\choose n}+4{13\choose n}-{0\choose n}\right), $$ that is, $$ \mathbb E(N)=4+\sum_{n=4}^{39}{52\choose n}^{-1}\left(4{39\choose n}-6{26\choose n}+4{13\choose n}\right), $$ or, $$ \mathbb E(N)=4+4B_{39}-6B_{26}+4B_{13},\qquad B_i=\sum_{n=4}^{i}{52\choose n}^{-1}{i\choose n}. $$ Numerically, $$ \mathbb E(N)=\frac{4829}{630}=7+\frac23-\frac1{630}\approx7.66508. $$