Expected value of maximum of two random variables from uniform distribution

Here are some useful tools:

  1. For every nonnegative random variable $Z$, $$\mathrm E(Z)=\int_0^{+\infty}\mathrm P(Z\geqslant z)\,\mathrm dz=\int_0^{+\infty}(1-\mathrm P(Z\leqslant z))\,\mathrm dz.$$
  2. As soon as $X$ and $Y$ are independent, $$\mathrm P(\max(X,Y)\leqslant z)=\mathrm P(X\leqslant z)\,\mathrm P(Y\leqslant z).$$
  3. If $U$ is uniform on $(0,1)$, then $a+(b-a)U$ is uniform on $(a,b)$.

If $(a,b)=(0,1)$, items 1. and 2. together yield $$\mathrm E(\max(X,Y))=\int_0^1(1-z^2)\,\mathrm dz=\frac23.$$ Then item 3. yields the general case, that is, $$\mathrm E(\max(X,Y))=a+\frac23(b-a)=\frac13(2b+a).$$


I very much liked Martin's approach but there's an error with his integration. The key is on line three. The intution here should be that when y is the maximum, then x can vary from 0 to y whereas y can be anything and vice-versa for when x is the maximum. So the order of integration should be flipped:

enter image description here


did's excellent answer proves the result. The picture here enter image description here

may help your intuition. This is the "average" configuration of two random points on a interval and, as you see, the maximum value is two-thirds of the way from the left endpoint.

Tags:

Probability