Expressing the infinite sum $1 + 22 + 333 + 4444 + \dotsb$
The terms of the sequence are
$$a_n =\left(n-10\cdot\left\lfloor\frac{n}{10}\right\rfloor\right)\cdot\frac{10^{n}-1}{9}$$
the sum of your series is $\infty$
$$\sum_{n=1}^{\infty}\left(n-10\cdot\left\lfloor\frac{n}{10}\right\rfloor\right)\cdot\frac{10^{n}-1}{9}$$