Extended Euclidean Algorithm problem
$\begin{eqnarray}\!\text{By the distributive law}\ \ && \,8\:\!\ \overbrace{ -\, 1\cdot(999\,-\,8\cdot 124)}^{\textstyle -1\,(a\!-\!b) = -a\! +\! b\ }\\ &=&\ 8\cdot\color{#c00}1\, -\, 999\, +\, 8\cdot\color{#c00}{124}\\ &=&\ 8\cdot\color{#0a0}{ 125} - 999\ \ \,{\rm by}\ \ \color{#c00}{124 + 1} = \color{#0a0}{125}\end{eqnarray}$
This common "$\rm\color{#90f}{back}$-substitution" extended Euclidean gcd algorithm is notoriously error-prone. Better, this $\rm\color{#90f}{forward}$ method is simpler to compute and easier to remember. It keeps track of each remainder's expression as a linear combination of the gcd arguments. Executing it here yields
$$\begin{array}{rrr} 8000 & 1 & 0\\ 7001 & 0 & 1\\ 999 & 1 & -1\\ 8 & -7& 8\\ -1 & \!\!\color{#c00}{876} & \!\!\!\color{#0a0}{-1001}\end{array}$$
where each line $\,\ a\ \ b\ \ c\ \,$ denotes that $\ a = 8000\, b + 7001\, c.\ $ Therefore
$$ 1 = -\color{#c00}{876}\cdot 8000 + \color{#0a0}{1001}\cdot 7001$$
The linked post described the algorithm in great detail, in a way that is easy to remember.
Here is another example computing $\rm\ gcd(141,19),\,$ with the equations written explicitly
$$\rm\begin{eqnarray} [\![1]\!]\ \ \ \, \color{#C00}{141}\!\ &=&\,\ \ 1&\cdot& 141\, +\ 0&\cdot& 19 \\ [\![2]\!]\quad\ \color{#C00}{19}\ &=&\,\ \ 0&\cdot& 141\, +\ 1&\cdot& 19 \\ \color{#940}{[\![1]\!]-7\,[\![2]\!]}\, \rightarrow\, [\![3]\!]\quad\ \ \ \color{#C00}{ 8}\ &=&\,\ \ 1&\cdot& 141\, -\ 7&\cdot& 19 \\ \color{#940}{[\![2]\!]-2\,[\![3]\!]}\,\rightarrow\,[\![4]\!]\quad\ \ \ \color{#C00}{3}\ &=& {-}2&\cdot& 141\, + 15&\cdot& 19 \\ \color{#940}{[\![3]\!]-3\,[\![4]\!]}\,\rightarrow\,[\![5]\!]\quad \color{#C00}{{-}1}\ &=&\,\ \ 7&\cdot& 141\, -\color{#0A0}{ 52}&\cdot& \color{#0A0}{19} \end{eqnarray}\qquad\qquad\qquad\quad$$
See here and here for handy ways to use this to compute modular fractions and inverses.
$$ \begin{align} 8000&=7001\cdot1+999\\ 7001&=999\cdot7+8\\ 999&=8\cdot124+7\\ 8&=7\cdot1+1\\[12pt] 1 &=8-7\cdot1\\ &=8-1(999-8\cdot124)\\ &=8\cdot125-1\cdot999\\ &=125(7001-7\cdot999)-1(8000-7001\cdot1)\\ &=126\cdot7001-1\cdot8000-875\cdot999\\ &=126\cdot7001-1\cdot8000-875\cdot(8000-7001)\\ &=1001\cdot7001-876\cdot8000 \end{align} $$ As Bill Dubuque mentions, the back-substitution method is hard to follow, and therefore, error-prone. There is also Euclid-Wallis version of the Extended Euclidean Algorithm: $$ \begin{array}{r} &&1&7&124&1&7\\\hline \color{#C00000}{1}&0&1&-7&869&\color{#C00000}{-876}&7001\\ 0&\color{#00A000}{1}&-1&8&-993&\color{#00A000}{1001}&-8000\\ \color{#C00000}{8000}&\color{#00A000}{7001}&999&8&7&\color{#0000FF}{1}&0\\ \end{array} $$ Which gives $1001\cdot7001-876\cdot8000=1$