Fast algorithm for repeated calculation of percentile?

You can do it with two heaps. Not sure if there's a less 'contrived' solution, but this one provides O(logn) time complexity and heaps are also included in standard libraries of most programming languages.

First heap (heap A) contains smallest 75% elements, another heap (heap B) - the rest (biggest 25%). First one has biggest element on the top, second one - smallest.

  1. Adding element.

See if new element x is <= max(A). If it is, add it to heap A, otherwise - to heap B.
Now, if we added x to heap A and it became too big (holds more than 75% of elements), we need to remove biggest element from A (O(logn)) and add it to heap B (also O(logn)).
Similar if heap B became too big.

  1. Finding "0.75 median"

Just take the largest element from A (or smallest from B). Requires O(logn) or O(1) time, depending on heap implementation.

edit
As Dolphin noted, we need to specify precisely how big each heap should be for every n (if we want precise answer). For example, if size(A) = floor(n * 0.75) and size(B) is the rest, then, for every n > 0, array[array.size * 3/4] = min(B).


A simple Order Statistics Tree is enough for this.

A balanced version of this tree supports O(logn) time insert/delete and access by Rank. So you not only get the 75% percentile, but also the 66% or 50% or whatever you need without having to change your code.

If you access the 75% percentile frequently, but only insert less frequently, you can always cache the 75% percentile element during an insert/delete operation.

Most standard implementations (like Java's TreeMap) are order statistic trees.


If you can do with an approximate answer, you can use a histogram instead of keeping entire values in memory.

For each new value, add it to the appropriate bin. Calculate percentile 75th by traversing bins and summing counts until 75% of the population size is reached. Percentile value is between bin's (which you stopped at) low bound to high bound.

This will provide O(B) complexity where B is the count of bins, which is range_size/bin_size. (use bin_size appropriate to your user case).

I have implemented this logic in a JVM library: https://github.com/IBM/HBPE which you can use as a reference.