Fastest way to store a numpy array in redis
You could also consider using msgpack-numpy, which provides "encoding and decoding routines that enable the serialization and deserialization of numerical and array data types provided by numpy using the highly efficient msgpack format." -- see https://msgpack.org/.
Quick proof-of-concept:
import msgpack
import msgpack_numpy as m
import numpy as np
m.patch() # Important line to monkey-patch for numpy support!
from redis import Redis
r = Redis('127.0.0.1')
# Create an array, then use msgpack to serialize it
d_orig = np.array([1,2,3,4])
d_orig_packed = m.packb(d_orig)
# Set the data in redis
r.set('d', d_orig_packed)
# Retrieve and unpack the data
d_out = m.unpackb(r.get('d'))
# Check they match
assert np.alltrue(d_orig == d_out)
assert d_orig.dtype == d_out.dtype
On my machine, msgpack runs much quicker than using struct:
In: %timeit struct.pack('4096L', *np.arange(0, 4096))
1000 loops, best of 3: 443 µs per loop
In: %timeit m.packb(np.arange(0, 4096))
The slowest run took 7.74 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 32.6 µs per loop
I don't know if it is fastest, but you could try something like this...
Storing a Numpy array to Redis goes like this - see function toRedis()
:
- get shape of Numpy array and encode
- append the Numpy array as bytes to the shape
- store the encoded array under supplied key
Retrieving a Numpy array goes like this - see function fromRedis()
:
- retrieve from Redis the encoded string corresponding to supplied key
- extract the shape of the Numpy array from the string
- extract data and repopulate Numpy array, reshape to original shape
#!/usr/bin/env python3
import struct
import redis
import numpy as np
def toRedis(r,a,n):
"""Store given Numpy array 'a' in Redis under key 'n'"""
h, w = a.shape
shape = struct.pack('>II',h,w)
encoded = shape + a.tobytes()
# Store encoded data in Redis
r.set(n,encoded)
return
def fromRedis(r,n):
"""Retrieve Numpy array from Redis key 'n'"""
encoded = r.get(n)
h, w = struct.unpack('>II',encoded[:8])
# Add slicing here, or else the array would differ from the original
a = np.frombuffer(encoded[8:]).reshape(h,w)
return a
# Create 80x80 numpy array to store
a0 = np.arange(6400,dtype=np.uint16).reshape(80,80)
# Redis connection
r = redis.Redis(host='localhost', port=6379, db=0)
# Store array a0 in Redis under name 'a0array'
toRedis(r,a0,'a0array')
# Retrieve from Redis
a1 = fromRedis(r,'a0array')
np.testing.assert_array_equal(a0,a1)
You could add more flexibility by encoding the dtype
of the Numpy array along with the shape. I didn't do that because it may be the case that you already know all your arrays are of one specific type and then the code would just be bigger and harder to read for no reason.
Rough benchmark on modern iMac:
80x80 Numpy array of np.uint16 => 58 microseconds to write
200x200 Numpy array of np.uint16 => 88 microseconds to write
Keywords: Python, Numpy, Redis, array, serialise, serialize, key, incr, unique
You can check Mark Setchell's answer for how to actually write the bytes into Redis. Below I rewrite the functions fromRedis
and toRedis
to account for arrays of variable dimension size and to also include the array shape.
def toRedis(arr: np.array) -> str:
arr_dtype = bytearray(str(arr.dtype), 'utf-8')
arr_shape = bytearray(','.join([str(a) for a in arr.shape]), 'utf-8')
sep = bytearray('|', 'utf-8')
arr_bytes = arr.ravel().tobytes()
to_return = arr_dtype + sep + arr_shape + sep + arr_bytes
return to_return
def fromRedis(serialized_arr: str) -> np.array:
sep = '|'.encode('utf-8')
i_0 = serialized_arr.find(sep)
i_1 = serialized_arr.find(sep, i_0 + 1)
arr_dtype = serialized_arr[:i_0].decode('utf-8')
arr_shape = tuple([int(a) for a in serialized_arr[i_0 + 1:i_1].decode('utf-8').split(',')])
arr_str = serialized_arr[i_1 + 1:]
arr = np.frombuffer(arr_str, dtype = arr_dtype).reshape(arr_shape)
return arr