Example 1: random forrest plotting feature importance function
def plot_feature_importances(model):
n_features = data_train.shape[1]
plt.figure(figsize=(20,20))
plt.barh(range(n_features), model.feature_importances_, align='center')
plt.yticks(np.arange(n_features), data_train.columns.values)
plt.xlabel('Feature importance')
plt.ylabel('Feature')
Example 2: sklearn random forest feature importance
import pandas as pd
forest_importances = pd.Series(importances, index=feature_names)
fig, ax = plt.subplots()
forest_importances.plot.bar(yerr=std, ax=ax)
ax.set_title("Feature importances using MDI")
ax.set_ylabel("Mean decrease in impurity")
fig.tight_layout()
Example 3: feature_importances_ sklearn
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.ensemble import ExtraTreesClassifier
# Build a classification task using 3 informative features
X, y = make_classification(n_samples=1000,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
n_classes=2,
random_state=0,
shuffle=False)
# Build a forest and compute the impurity-based feature importances
forest = ExtraTreesClassifier(n_estimators=250,
random_state=0)
forest.fit(X, y)
importances = forest.feature_importances_
std = np.std([tree.feature_importances_ for tree in forest.estimators_],
axis=0)
indices = np.argsort(importances)[::-1]
# Print the feature ranking
print("Feature ranking:")
for f in range(X.shape[1]):
print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]]))
# Plot the impurity-based feature importances of the forest
plt.figure()
plt.title("Feature importances")
plt.bar(range(X.shape[1]), importances[indices],
color="r", yerr=std[indices], align="center")
plt.xticks(range(X.shape[1]), indices)
plt.xlim([-1, X.shape[1]])
plt.show()
Example 4: sklearn random forest feature importance
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
X, y = make_classification(
n_samples=1000, n_features=10, n_informative=3, n_redundant=0,
n_repeated=0, n_classes=2, random_state=0, shuffle=False)
X_train, X_test, y_train, y_test = train_test_split(
X, y, stratify=y, random_state=42)
Example 5: sklearn random forest feature importance
from sklearn.ensemble import RandomForestClassifier
feature_names = [f'feature {i}' for i in range(X.shape[1])]
forest = RandomForestClassifier(random_state=0)
forest.fit(X_train, y_train)
Example 6: sklearn random forest feature importance
import time
import numpy as np
start_time = time.time()
importances = forest.feature_importances_
std = np.std([
tree.feature_importances_ for tree in forest.estimators_], axis=0)
elapsed_time = time.time() - start_time
print(f"Elapsed time to compute the importances: "
f"{elapsed_time:.3f} seconds")