__FILE__ macro manipulation handling at compile time

In projects using CMake to drive the build process, you can use a macro like this to implement a portable version that works on any compiler or platform. Though personally I pity the fool who must use something other than gcc... :)

# Helper function to add preprocesor definition of FILE_BASENAME
# to pass the filename without directory path for debugging use.
#
# Note that in header files this is not consistent with
# __FILE__ and __LINE__ since FILE_BASENAME will be the
# compilation unit source file name (.c/.cpp).
#
# Example:
#
#   define_file_basename_for_sources(my_target)
#
# Will add -DFILE_BASENAME="filename" for each source file depended on
# by my_target, where filename is the name of the file.
#
function(define_file_basename_for_sources targetname)
    get_target_property(source_files "${targetname}" SOURCES)
    foreach(sourcefile ${source_files})
        # Add the FILE_BASENAME=filename compile definition to the list.
        get_filename_component(basename "${sourcefile}" NAME)
        # Set the updated compile definitions on the source file.
        set_property(
            SOURCE "${sourcefile}" APPEND
            PROPERTY COMPILE_DEFINITIONS "FILE_BASENAME=\"${basename}\"")
    endforeach()
endfunction()

Then to use the macro, just call it with the name of the CMake target:

define_file_basename_for_sources(myapplication)

There is currently no way of doing full string processing at compile time (the maximum we can work with in templates are the weird four-character-literals).

Why not simply save the processed name statically, e.g.:

namespace 
{
  const std::string& thisFile() 
  {
      static const std::string s(prepocessFileName(__FILE__));
      return s;
  }
}

This way you are only doing the work once per file. Of course you can also wrap this into a macro etc.


Using C++11, you have a couple of options. Let's first define:

constexpr int32_t basename_index (const char * const path, const int32_t index = 0, const int32_t slash_index = -1)
{
     return path [index]
         ? ( path [index] == '/'
             ? basename_index (path, index + 1, index)
             : basename_index (path, index + 1, slash_index)
           )
         : (slash_index + 1)
     ;
}

If your compiler supports statement expressions, and you want to be sure that the basename computation is being done at compile-time, you can do this:

// stmt-expr version
#define STRINGIZE_DETAIL(x) #x
#define STRINGIZE(x) STRINGIZE_DETAIL(x)

#define __FILELINE__ ({ static const int32_t basename_idx = basename_index(__FILE__);\
                        static_assert (basename_idx >= 0, "compile-time basename");  \
                        __FILE__ ":" STRINGIZE(__LINE__) ": " + basename_idx;})

If your compiler doesn't support statement expressions, you can use this version:

// non stmt-expr version
#define __FILELINE__ (__FILE__ ":" STRINGIZE(__LINE__) ": " + basename_index(__FILE__))

With this non stmt-expr version, gcc 4.7 and 4.8 call basename_index at run-time, so you're better off using the stmt-expr version with gcc. ICC 14 produces optimal code for both versions. ICC13 can't compile the stmt-expr version, and produces suboptimal code for the non stmt-expr version.

Just for completeness, here's the code all in one place:

#include <iostream>
#include <stdint.h>

constexpr int32_t basename_index (const char * const path, const int32_t index = 0, const int32_t slash_index = -1)
{
   return path [index]
       ? ( path [index] == '/'
           ? basename_index (path, index + 1, index)
           : basename_index (path, index + 1, slash_index)
           )
       : (slash_index + 1)
       ;
}

#define STRINGIZE_DETAIL(x) #x
#define STRINGIZE(x) STRINGIZE_DETAIL(x)

#define __FILELINE__ ({ static const int32_t basename_idx = basename_index(__FILE__); \
                        static_assert (basename_idx >= 0, "compile-time basename");   \
                        __FILE__ ":" STRINGIZE(__LINE__) ": " + basename_idx;})


int main() {
  std::cout << __FILELINE__ << "It works" << std::endl;
}