Find all possible combinations of a String representation of a number
Assuming you only need to count the number of combinations.
Assuming 0 followed by an integer in [1,9] is not a valid concatenation, then a brute-force strategy would be:
Count(s,n)
x=0
if (s[n-1] is valid)
x=Count(s,n-1)
y=0
if (s[n-2] concat s[n-1] is valid)
y=Count(s,n-2)
return x+y
A better strategy would be to use divide-and-conquer:
Count(s,start,n)
if (len is even)
{
//split s into equal left and right part, total count is left count multiply right count
x=Count(s,start,n/2) + Count(s,start+n/2,n/2);
y=0;
if (s[start+len/2-1] concat s[start+len/2] is valid)
{
//if middle two charaters concatenation is valid
//count left of the middle two characters
//count right of the middle two characters
//multiply the two counts and add to existing count
y=Count(s,start,len/2-1)*Count(s,start+len/2+1,len/2-1);
}
return x+y;
}
else
{
//there are three cases here:
//case 1: if middle character is valid,
//then count everything to the left of the middle character,
//count everything to the right of the middle character,
//multiply the two, assign to x
x=...
//case 2: if middle character concatenates the one to the left is valid,
//then count everything to the left of these two characters
//count everything to the right of these two characters
//multiply the two, assign to y
y=...
//case 3: if middle character concatenates the one to the right is valid,
//then count everything to the left of these two characters
//count everything to the right of these two characters
//multiply the two, assign to z
z=...
return x+y+z;
}
The brute-force solution has time complexity of T(n)=T(n-1)+T(n-2)+O(1)
which is exponential.
The divide-and-conquer solution has time complexity of T(n)=3T(n/2)+O(1)
which is O(n**lg3).
Hope this is correct.
To just get the count, the dynamic programming approach is pretty straight-forward:
A[0] = 1
for i = 1:n
A[i] = 0
if input[i-1] > 0 // avoid 0
A[i] += A[i-1];
if i > 1 && // avoid index-out-of-bounds on i = 1
10 <= (10*input[i-2] + input[i-1]) <= 26 // check that number is 10-26
A[i] += A[i-2];
If you instead want to list all representations, dynamic programming isn't particularly well-suited for this, you're better off with a simple recursive algorithm.
First off, we need to find an intuitive way to enumerate all the possibilities. My simple construction, is given below.
let us assume a simple way to represent your integer in string format.
a1 a2 a3 a4 ....an, for instance in 121 a1 -> 1 a2 -> 2, a3 -> 1
Now,
We need to find out number of possibilities of placing a + sign in between two characters. + is to mean characters concatenation here.
a1 - a2 - a3 - .... - an, - shows the places where '+' can be placed. So, number of positions is n - 1, where n is the string length.
Assume a position may or may not have a + symbol shall be represented as a bit. So, this boils down to how many different bit strings are possible with the length of n-1, which is clearly 2^(n-1). Now in order to enumerate the possibilities go through every bit string and place right + signs in respective positions to get every representations,
For your example, 121
Four bit strings are possible 00 01 10 11
1 2 1
1 2 + 1
1 + 2 1
1 + 2 + 1
And if you see a character followed by a +, just add the next char with the current one and do it sequentially to get the representation,
x + y z a + b + c d
would be (x+y) z (a+b+c) d
Hope it helps.
And you will have to take care of edge cases where the size of some integer > 26, of course.
I think, recursive traverse through all possible combinations would do just fine:
mapping = {"1":"A", "2":"B", "3":"C", "4":"D", "5":"E", "6":"F", "7":"G",
"8":"H", "9":"I", "10":"J",
"11":"K", "12":"L", "13":"M", "14":"N", "15":"O", "16":"P",
"17":"Q", "18":"R", "19":"S", "20":"T", "21":"U", "22":"V", "23":"W",
"24":"A", "25":"Y", "26":"Z"}
def represent(A, B):
if A == B == '':
return [""]
ret = []
if A in mapping:
ret += [mapping[A] + r for r in represent(B, '')]
if len(A) > 1:
ret += represent(A[:-1], A[-1]+B)
return ret
print represent("121", "")